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Carruthers IM, Laplagne DA, Jaegle A, Briguglio JJ, Mwil-
ambwe-Tshilobo L, Natan RG, Geffen MN. Emergence of in-
variant representation of vocalizations in the auditory cortex. J
Neurophysiol 114: 2726 –2740, 2015. First published August 26,
2015; doi:10.1152/jn.00095.2015.—An essential task of the audi-
tory system is to discriminate between different communication sig-
nals, such as vocalizations. In everyday acoustic environments, the
auditory system needs to be capable of performing the discrimination
under different acoustic distortions of vocalizations. To achieve this,
the auditory system is thought to build a representation of vocaliza-
tions that is invariant to their basic acoustic transformations. The
mechanism by which neuronal populations create such an invariant
representation within the auditory cortex is only beginning to be
understood. We recorded the responses of populations of neurons in
the primary and nonprimary auditory cortex of rats to original and
acoustically distorted vocalizations. We found that populations of
neurons in the nonprimary auditory cortex exhibited greater invari-
ance in encoding vocalizations over acoustic transformations than
neuronal populations in the primary auditory cortex. These findings
are consistent with the hypothesis that invariant representations are
created gradually through hierarchical transformation within the au-
ditory pathway.
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tions

IN EVERYDAY acoustic environments, communication signals are
subjected to acoustic transformations. For example, a word
may be pronounced slowly or quickly, or by different speakers.
These transformations can include shifts in spectral content,
variations in frequency modulation, and temporal distortions.
Yet the auditory system needs to preserve the ability to distin-
guish between different words or vocalizations under many
acoustic transformations, forming an “invariant” or “tolerant”
representation (Sharpee et al. 2011). Presently, little is under-
stood about how the auditory system creates a representation of
communication signals that is invariant to acoustic distortions.

It has been proposed that within the auditory processing
pathway, invariance emerges in a hierarchical fashion, with
higher auditory areas exhibiting progressively more tolerant
representations of complex sounds. The auditory cortex (AC)
is an essential brain area for encoding behaviorally important
acoustic signals (Aizenberg and Geffen 2013; Engineer et al.
2008; Fritz et al. 2010; Galindo-Leon et al. 2009; Recanzone
and Cohen 2010; Schnupp et al. 2006; Wang et al. 1995). Up

to and within the primary auditory cortex (A1), the represen-
tations of auditory stimuli are hypothesized to support an
increase in invariance. Whereas neurons in input layers of A1
preferentially respond to specific features of acoustic stimuli,
neurons in the output layers become more selective to combi-
nations of stimulus features (Atencio et al. 2009; Sharpee et al.
2011). In the visual pathway, recent studies suggest a similar
organizing principle (DiCarlo and Cox 2007), such that popu-
lations of neurons in higher visual area exhibit greater toler-
ance to visual stimulus transformations than neurons in the
lower visual area (Rust and DiCarlo 2010; Rust and DiCarlo
2012). Here, we tested whether populations of neurons beyond
A1, in a nonprimary auditory cortex, support a similar increase
in invariant representation.

We focused on the transformation between A1 and one of its
downstream targets in the rat, the suprarhinal auditory field
(SRAF) (Arnault and Roger 1990; Polley et al. 2007; Profant et
al. 2013; Romanski and LeDoux 1993b). A1 receives projec-
tions directly from the lemniscal thalamus into the granular
layers (Kimura et al. 2003; Polley et al. 2007; Roger and
Arnault 1989; Romanski and LeDoux 1993b; Storace et al.
2010; Winer et al. 1999) and sends extensive convergent
projections to SRAF (Covic and Sherman 2011; Winer and
Schreiner 2010). Neurons in A1 exhibit short-latency, short
time-to-peak responses to tones (Polley et al. 2007; Profant et
al. 2013; Rutkowski et al. 2003; Sally and Kelly 1988). By
contrast, neurons in SRAF exhibit delayed response latencies,
longer time to peak in response to tones, spectrally broader
receptive fields and lower spike rates in responses to noise than
neurons in A1 (Arnault and Roger 1990; LeDoux et al. 1991;
Polley et al. 2007; Romanski and LeDoux 1993a), consistent
with responses in nonprimary AC in other species (Carrasco
and Lomber 2011; Kaas and Hackett 1998; Kikuchi et al. 2010;
Kusmierek and Rauschecker 2009; Lakatos et al. 2005; Petkov
et al. 2006; Rauschecker and Tian 2004; Rauschecker et al.
1995). These properties also suggest an increase in tuning
specificity from A1 to SRAF, which is consistent with the
hierarchical coding hypothesis.

Rats use ultrasonic vocalizations (USVs) for communication
(Knutson et al. 2002; Portfors 2007; Sewell 1970; Takahashi et
al. 2010). Like mouse USVs (Galindo-Leon et al. 2009; Liu
and Schreiner 2007; Marlin et al. 2015; Portfors 2007), male
USVs evoke temporally precise and predictable patterns of
activity across A1 (Carruthers et al. 2013), thereby providing
us an ideal set of stimuli with which to probe invariance to
acoustic transformations in the auditory cortex. The USVs used
in this study are part of the more general class of high-

Address for reprint requests and other correspondence: M. N. Geffen, Dept.
of Otorhinolaryngology and Head and Neck Surgery, Univ. of Pennsylvania
Perelman School of Medicine, 5 Ravdin, 3400 Spruce St., Philadelphia, PA
19104 (e-mail: mgeffen@med.upenn.edu).

J Neurophysiol 114: 2726–2740, 2015.
First published August 26, 2015; doi:10.1152/jn.00095.2015.

2726 0022-3077/15 Copyright © 2015 the American Physiological Society www.jn.org

Downloaded from journals.physiology.org/journal/jn (051.006.022.059) on February 7, 2021.

mailto:mgeffen@med.upenn.edu


frequency USVs, which are produced during positive social,
sexual, and emotional situations (Barfield et al. 1979; Bialy et
al. 2000; Brudzynski and Pniak 2002; Burgdorf et al. 2000;
Burgdorf et al. 2008; Knutson et al. 1998; 2002; McIntosh et
al. 1978; Parrott 1976; Sales 1972; Wohr et al. 2008). The
specific USVs were recorded during friendly male adolescent
play (Carruthers et al. 2013; Sirotin et al. 2014; Wright et al.
2010). Responses of neurons in A1 to USVs can be predicted
based on a linear non-linear model that takes as an input two
time-varying parameters of the acoustic waveform of USVs:
the frequency- and temporal-modulation of the dominant
spectral component (Carruthers et al. 2013). Therefore, we
used these sound parameters as the basic acoustic dimensions
along which the stimuli were distorted.

At the level of neuronal population responses to USVs,
response invariance can be characterized by measuring the
changes in neurometric discriminability between USVs as a
function of the presence of acoustic distortions. Neurometric
discriminability is a measure of how well an observer can
discriminate between stimuli based on the recorded neuronal
signals (Bizley et al. 2009; Gai and Carney 2008; Schneider
and Woolley 2010). Because this measure quantifies available
information, which is a normalized quantity, it allows us to
compare the expected effects across two different neuronal
populations in different anatomical areas. If the representation
in a brain area is invariant, discriminability between USVs is
expected to show little degradation in response to acoustic
distortions. On the other hand, if the neuronal representation is
based largely on direct encoding of acoustic features, rather
than encoding of the vocalization identify, the neurometric
discriminability will be degraded with changes in the acoustic
features of the USVs.

Here, we recorded the responses of populations of neurons
in A1 and SRAF to original and acoustically distorted USVs,
and tested how acoustic distortion of USVs affected the ability
of neuronal populations to discriminate between different in-
stances of USVs. We found that neuronal populations in SRAF
exhibit greater generalization for acoustic distortions of vocal-
izations than neuronal populations in A1.

METHODS

Animals. All procedures were approved by the Institutional Animal
Care and Use Committee of the University of Pennsylvania. Subjects
in all experiments were adult male Long Evans rats, 12–16 wk of age.
Rats were housed in a temperature- and humidity-controlled vivarium
on a reversed 24 h light-dark cycle with food and water provided ad
libitum.

Stimuli. The original vocalizations were extracted from a recording
of an adult male Long Evans rat interacting with a conspecific male in
a custom-built social arena (Fig. 1A). As described previously (Sirotin
et al. 2014), the arena is split in half and kept in the dark, such that the
two rats can hear and smell each other and their vocalizations can be
unambiguously assigned to the emitting subject. In these sessions, rats
emitted high rates of calls from the “50 kHz” family and none of the
“22 kHz” type, suggesting interactions were positive in nature
(Brudzynski 2009). Recordings were made using condenser micro-
phones with nearly flat frequency response from 10 to 150 kHz
(CM16/CMPA-5V, Avisoft Bioacustics) digitized with a data acqui-
sition board at 300 kHz sampling frequency (PCIe-6259 DAQ with
BNC-2110 connector, National Instruments).

We selected eight representative USVs with distinct spectrotemporal
properties (Figs. 1 and 2) (Carruthers et al. 2013) from the 6,865 ones

emitted by one of the rats. We contrasted mean frequency and frequency
bandwidth of the selected calls with that of the whole repertoire from the
same rat (Fig. 2B). We calculated vocalization center frequency as the
mean of the fundamental frequency and bandwidth as the root mean
square of the mean-subtracted fundamental frequency of each USV. We
denoised and parametrized USVs following methods published previ-
ously by our group (Carruthers et al. 2013). Briefly, we constructed a
noiseless version of the vocalizations using an automated procedure. We
computed the noiseless signal as a frequency- and amplitude-modulated
tone, such that at any time, the frequency, f(t), and amplitude, a(t), of that
tone were matched to the peak amplitude and frequency of the recorded
USV at all times, using the relation

x�t� � a�t�sin�2��
0

t

f���d��.

We constructed the acoustic distortions of the 8 selected vocaliza-
tions along the dimensions that are essential for their encoding in the
auditory pathway (Fig. 1B). For each of these 8 original vocalizations
we generated eight different transformed versions, amounting to 9
versions (referred to as transformation conditions) of each vocaliza-
tion. We then generated the stimulus sequences by concatenating the
vocalizations, padding them with silence such that they were pre-
sented at a rate of 2.5 Hz.

Stimulus transformations. The 8 transformations applied to each
vocalization were temporal compression (designated T�, transformed

by scaling the length by a factor of 0.75: x�t� � a� t

0.75�sin

�2� �
0

t
0.75

f�0.75��d��), temporal dilation (T�, length � 1.25: x�t� � a

� t

1.25�sin�2� �
0

t
1.25

f�1.25��d��), spectral compression (FM�, bandwidth

� 0.75: x�t� � a�t�sin�2��
0

t

	0.75�f��� � f̄ � � f̄ 
d��), spectral dilation

(FM�, bandwidth � 1.25: x�t� � a�t�sin�2��
0

t

	1.25�f��� � f̄ � � f̄ 
d��),
spectrotemporal compression (T�/FM�, length and bandwidth � 0.75:

x�t� � a� t

0.75�sin�2� �
0

t
0.75

	0.75�f�0.75�� � f̄ � � f̄ 
d��), spectrotemporal

dilation (T�/FM�, length and bandwidth � 1.25: x�t� � a� t

1.25�sin

�2� �
0

t
1.25

	1.25�f�1.25�� � f̄ � � f̄ 
d��), center-frequency increase (CF�,

frequency � 7.9 kHz: x�t� � a�t�sin	2��
0

t

�f��� � 7.9 kHz�d�
), and

center-frequency decrease (CF minus, frequency minus 7.9 kHz: x�t� �

a�t�sin	2��
0

t

�f��� � 7.9 kHz�d�
). Spectrograms of denoised vocaliza-

tions are shown in Fig. 1A. Spectrograms of transformations of one of the
vocalizations are shown in Fig. 1B.

Microdrive implantation. Rats were anesthetized with an intraperi-
toneal injection of a mixture of ketamine (60 mg/kg body wt) and
dexmedetomidine (0.25 mg/kg). Buprenorphine (0.1 mg/kg) was
administered as an operative analgesic with ketoprofen (5 mg/kg) as
postoperative analgesic. A small craniotomy was performed over A1
or SRAF. Eight independently movable tetrodes housed in a micro-
drive (6 for recordings and 2 used as a reference) were implanted in
A1 (targeting layer 2/3), SRAF (targeting layer 2/3) or both as
previously described (Carruthers et al. 2013; Otazu et al. 2009). The
microdrive was secured to the skull using dental cement and acrylic.
The tetrodes’ initial lengths were adjusted to target A1 or SRAF
during implantation, and were furthermore advanced by up to 2 mm
(in 40-�m increments, once per recording session) once the tetrode
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was implanted. A1 and SRAF were reached by tetrodes implanted at
the same angle (vertically) through a single craniotomy window (on
the top of the skull) by advancing the tetrodes to different depths
on the basis of their stereotactic coordinates (Paxinos and Watson
1986; Polley et al. 2007). At the endpoint of the experiment a small
lesion was made at the electrode tip by passing a short current (10 �A,
10 s) between electrodes within the same tetrode. The brain areas from
which the recordings were made were identified through histological
reconstruction of the electrode tracks. Limits of brain areas were taken
from Paxinos and Watson (1986) and Polley et al. (2007).

Stimulus presentation. The rat was placed on the floor of a custom-
built behavioral chamber, housed inside a large double-walled acous-
tic isolation booth (Industrial Acoustics). The acoustical stimulus was
delivered using an electrostatic speaker (MF-1, Tucker-Davis Tech-
nologies) positioned directly above the subject. All stimuli were
controlled using custom-built software (Mathworks), a high-speed
digital-to-analog card (National Instruments) and an amplifier (TDT).
The speaker output was calibrated using a 1/4-in. free-field micro-
phone (Bruel and Kjaer, type 4939) at the approximate location of the
animal’s head. The input to the speaker was compensated to ensure
that pure tones between 0.4 and 80 kHz could be output at a volume
of 70 dB to within a margin of at most 3 dB. Spectral and temporal
distortion products as well as environmental reverberation products
were �50 dB below the mean sound pressure level relative to 20 �Pa
(SPL) of all stimuli, including USVs (Carruthers et al. 2013). Unless
otherwise mentioned, all stimuli were presented at 65 dB (SPL),
32-bit depth and 400 kHz sample rate.

Electrophysiological recording. The electrodes were connected to
the recording apparatus (Neuralynx digital Lynx) via a thin cable. The
position of each tetrode was advanced by at least 40 �m between
sessions to avoid repeated recoding from the same units. Tetrode
position was noted to �20 �m precision. Electrophysiological data
from 24 channels were filtered between 600 and 6,000 Hz (to obtain
spike responses), digitized at 32 kHz, and stored for offline analysis.
Single and multi-unit waveform clusters were isolated using commer-
cial software (Plexon Spike Sorter) using previously described criteria
(Carruthers et al. 2013).

Unit selection and firing-rate matching. To be included in analysis,
a unit had to meet the following conditions: 1) its firing rate averaged
at least 0.1 Hz firing rate during stimulus presentation, and 2) its spike
count contained at least 0.78 bits/s of information about the vocaliza-
tion identity during the presentation of at least one vocalization under
one of the transformation conditions. We set this threshold to match
the elbow in the histogram of the distribution of information rates for
all recorded units that passed the firing rate threshold (see Fig. 5A,
inset). We validated this threshold with visual inspection of vocaliza-
tion response post-stimulus time histograms for units around the
threshold. We estimated the information rate for each neuron by fitting
a Poisson distribution to the distribution of spike counts evoked by each
vocalization. We then computed the entropy of this set of 8 distributions,
and subtracted from this value the prior entropy of 3 bits. Entropy was
defined as as H�S⁄R� � �r p�r� H�S⁄R � r� � � �r,s p�r,s�log2�p

�s⁄r��. We defined �s�r� �
�s

r

r!
e��s, the Poisson likelihood of detecting r

spikes in response to stimulus s where �s is the mean number of spikes
detected from a neuron in response to stimulus s. The entropy was

computed as H�S⁄R� � �
1

N�r,s 	s�r�log2� 	s�r�

� s' 	s'�r�
�. We performed

this computation separately for each transformation condition. In order to
remove a potential source of bias due to different firing rate statistics in
A1 and SRAF, we restricted all analyses to the subset of A1 units whose
average firing rates most closely matched the selected SRAF units. We
performed this restriction by recursively including the pair of units from
the two areas with the most similar firing rates.

Response sparseness. To examine vocalization selectivity of re-
corded units, sparseness of vocalization was computed as:

Sparseness � 1 �
��i�1

i�n FRi ⁄ n�2

�i�1
i�n FRi

2 ⁄ n

where FRi is the firing rate to vocalization i after the minimum firing
rate in response to vocalizations was subtracted, and n is number of
vocalizations included (which was 8). This value was computed
separately for each recorded unit for each vocalization transformation,
and then averaged over all transformations for recorded units from
either A1 or SRAF.

Population response vector. The population response on each trial
was represented as a vector, such that each element corresponded to
responses of a unit to a particular presentation of a particular vocal-
ization. Bin size for the spike count was selected by cross-validation
(Hung et al. 2005; Rust and Dicarlo 2010); we tested classifiers using
data binned at 50, 74, 100, and 150 ms. We found the highest
performance in both A1 and SRAF when using a single bin 74 ms
wide from vocalization onset, and we used this bin size for the
remainder of the analyses. As each transformation of each vocaliza-
tion was presented 100 times in each recording session, the analysis
yielded 100 � N matrix of responses for each of the 72 vocalization/
transformations (8 vocalizations and 9 transformation conditions),
where N was the number of units under analysis. The response of each
unit was represented as an average of spike counts from 10 randomly
selected trials. This pooling was performed after the segregation of
vectors into training and validation data, such that the spike-counts
used to produce the training data did not overlap with those used to
produce the validation data.

Linear support vector machine (SVM) classifier. We used the
support vector machine package libsvm (Chang and Lin 2011), as
distributed by the scikit-learn project, version 0.15 (Pedregosa et al.
2011) to classify population response vectors. We used a linear kernel
(resulting in decision boundaries defined by convex sets in the vector
space of population spiking responses), and a soft-margin parameter
of 1 (selected by cross-validation to maximize raw performance
scores).

Classification procedure. For each classification task, a set of
randomly selected N units (unless otherwise noted, we used N � 60)
was used to construct the population response vector as described
above, dividing the data into training and validation sets. For each
vocalization, 80 vectors were used to train and 20 to validate per-
transformation and within-transformation classification (see Across-
transformation performance below). In order to divide the data evenly
among the nine transformations, 81 vectors were used to train and 18
to validate in all-transformation classification. We used the vectors in
the training dataset to fit a classifier, and then tested the ability of the
resulting classifier to determine which of the vocalizations evoked
each of the vectors in the validation dataset.

Bootstrapping. The entire classification procedure was repeated
1000 times for each task, each time on a different randomly selected

Fig. 1. Spectrograms of vocalizations and transformations used as acoustic stimuli in the experiments. A: the eight different original vocalizations selected from
recordings, after de-noising. B: one original vocalization (center), as well as the 8 different transformations of that vocalization presented in the experiment. From
top left to bottom right: T�: temporally stretched by factor of 1.25; CF�: center frequency shifted up to 7.9 kHz; T�: temporally compressed by factor of 0.75;
FM�: frequency modulation scaled by a factor of 0.75; Original: denoised original vocalization; FM�: frequency modulation scaled by a factor of 1.25;
T�/FM�: temporally compressed and frequency modulation scaled by a factor of 0.75; CF�: center frequency shifted down by 7.9 kHz; T�/FM�: temporally
stretched and frequency modulation scaled by a factor of 1.25.
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population of units, and each time using a different randomly selected
set of trials for validation.

Mode of classification. Classification was performed in one of
two modes: In the pairwise mode, we trained a separate binary
classifier for each possible pair of vocalizations, and classified
which of the two vocalizations evoked each vector. In one-vs.-all

mode, we trained an 8-way classifier on responses to all vocaliza-
tions at once, and classified which of the eight vocalizations was
most likely to evoke each response vector (Chang and Lin 2011;
Pedregosa et al. 2011). This was implemented by computing all
pairwise classifications followed by a voting procedure. We re-
corded the results of each classification, and computed the perfor-
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mance of the classifier as the fraction of response vectors that it
classified correctly. As there were 8 vocalizations, performance
was compared to the chance value of 0.125 in one-vs.-all mode and
to 0.5 in pairwise mode.

Across-transformation performance. We trained and tested classi-
fiers on vectors drawn from a subset of different transformation
conditions. We chose the subset of transformations in two different
ways: When testing per-transformation performance, we trained and
tested on vectors drawn from presentations of one transformation and
from the original vocalizations. When testing all-transformation per-
formance, we trained and tested on vectors drawn from all 9 trans-
formation conditions.

Within-transformation performance. For each subset of transfor-
mations on which we tested across-transformation performance, we
also trained and tested classifiers on responses under each individual
transformation condition. We refer to performance of these classifiers,
averaged over the transformation conditions, as the within-transfor-
mation performance.

Generalization penalty. In order to evaluate how tolerant neural
codes are to stimulus transformation, we compared the performance
on generalization tasks with the performance on the corresponding
within-transformation tasks. We defined the generalization penalty
as the difference between the within- and across-transformation
performance.

RESULTS

In order to measure how invariant neural population re-
sponses to vocalizations are to their acoustic transformations,
we selected USV exemplars and constructed their transforma-
tions along basic acoustic dimensions. Rat USVs consist of
frequency modulated pure tones with little or no harmonic
structure. The simple structure of these vocalizations makes it
possible to extract the vocalization itself from background
noise with high fidelity. Their simplicity also allows us to
parameterize the vocalizations; they are characterized by the
dominant frequency, and the amplitude at that frequency, as
these quantities vary with time. In turn, this simple parameter-
ization allows us to easily and efficiently transform aspects of
the vocalizations. The details of this parameterization and
transformation process are reported in depth in our previously
published work (Carruthers et al. 2013).

We selected 8 distinct vocalizations from recordings of
social interactions between male adolescent rats (Carruthers et
al. 2013; Sirotin et al. 2014). We chose these vocalizations to
include a variety of temporal and frequency modulation spectra
(Fig. 2A) and to cover the center frequency and frequency
bandwidth distribution of the full set of recorded vocalizations
(Fig. 2B). We previously demonstrated that the responses of
neurons to vocalizations were dominated by modulation in
frequency and amplitude (Carruthers et al. 2013). Therefore,
we used frequency, frequency modulation, and amplitude mod-
ulation time course as the relevant acoustic dimensions to
generate transformed vocalizations. We constructed 8 different
transformed versions of these vocalizations by adjusting the
center frequency, duration, and/or spectral bandwidth of these
vocalizations (see METHODS), for a total of 9 versions of each
vocalization. The 8 original vocalizations we selected can be
seen in Fig. 1A, and Fig. 1B shows the different transformed
versions of vocalization 3. We recorded neural responses in A1
and SRAF in rats as they passively listened to these original
and transformed vocalizations. As in our previous study (Car-
ruthers et al. 2013), we found that A1 units respond selectively
and with high temporal precision to USVs (Fig. 3). SRAF units

exhibited similar patterns of responses (Fig. 4). For instance,
the representative A1 unit shown in Fig. 3 responded signifi-
cantly to all of the original vocalizations except vocalizations
4, 6, and 7 (row 1). Meanwhile, the representative SRAF unit
in Fig. 4 responded significantly to all of the original vocal-
izations except vocalization 6 (row 1). Note that the A1 unit’s
response to vocalization 5 varies significantly in both size and
temporal structure when the vocalization is transformed.
Meanwhile, the SRAF unit’s response to the same vocalization
is consistent regardless of which transformation of the vocal-
ization is played. In this instance, the selected SRAF unit
exhibits greater invariance to transformations of vocalization 5
than the selected A1 unit.

To compare the responses of populations of units in A1 and
SRAF and to ensure that the effects that we observe are not due
simply to increased information capacity of neurons that fire at
higher firing rates, we selected subpopulations of units that
were matched for firing rate distribution (Rust and Dicarlo
2010; Ulanovsky et al. 2004) (Fig. 5A). We then compared the
tuning properties of units from the two brain areas, as mea-
sured by the pure-tone frequency that evoked the highest firing
rate from the units. We found no difference in the distribution
of best frequencies between the two populations (Kolmogorov-
Smirnov test, P � 0.66) (Fig. 5B). We compared the amount of
information transmitted about a vocalization’s identity by the
spike counts of units in each brain area, and again found no
significant difference (Fig. 5C, Kolmogorov-Smirnov test, P �
0.42). Furthermore, we computed sparseness of responses of
A1 and SRAF units to vocalizations, which is a measure of
neuronal selectivity to vocalizations. A sparseness value of 1
indicates that the unit responds differently to a single vocal-
ization than to all others, whereas a sparseness value of 0
indicates that the unit responds equally to all vocalizations. The
mean sparseness values for responses were 0.354 for A1, and
0.376 for SRAF (Fig. 5D), but this difference was not signif-
icant (Kolmogorov-Smirnov test, P � 0.084). These analyses
demonstrate that the selected neuronal populations in A1 and
SRAF were similarly selective to vocalizations.

Neuronal populations in A1 and SRAF exhibited similar
performance in their ability to classify responses to different
vocalizations. We trained classifiers to distinguish between
original vocalizations on the basis of neuronal responses, and
we measured the resulting performances. To ensure that the
results were not skewed by a particular vocalization, we
computed the classification either for responses to each pair of
vocalizations (pairwise performance), or for responses to all 8
vocalizations simultaneously (8-way performance). We found
a small but significant difference between the average perfor-
mance of those classifiers trained and tested on A1 responses
and those trained and tested on the SRAF responses (Fig. 5, E
and F), but the results were mixed. Pairwise classifications
performed on populations of A1 units were 88.0% correct, and
on populations of SRAF units, 88.5% correct (Kolmogorov-
Smirnov test, P � 0.0013). On the other hand, 8-way classi-
fications performed on populations of 60 A1 units were 61%
correct, and on SRAF units were 59% correct (Kolmogorov-
Smirnov test, P � 7.7e�11). Figure 5, G and H, shows the
classification performance broken down by vocalization for
pairwise classification for A1 (Fig. 5G) and SRAF (Fig. 5H).
There is high variability in performance between vocalization
pairs for either brain area. However, the performance levels are
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Fig. 3. Peristimulus-time raster plots (above) and histograms (below) of an exemplar A1 unit showing selective responses to vocalization stimuli. Each column
corresponds to one original vocalization, and every two rows to one transformation of that vocalization. Histograms were first computed for 1-ms time bins, and
then smoothed with 11-ms Hanning window.
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similar. Together, these results indicate that neuronal popula-
tions in A1 and SRAF are similar in their ability to classify
vocalizations.

To test whether neuronal populations exhibited invariance to
transformations in classifying vocalizations, we measured
whether the ability of neuronal populations to classify vocal-
izations was reduced when vocalizations were distorted acous-

tically. Therefore, we trained and tested classifiers for vocal-
izations based on population neuronal responses and compared
their performance under within-transformation and across-
transformation conditions (Fig. 6A). In within-transformation
condition, the classifiers were trained and tested to discriminate
responses to vocalizations under a single transformation. In
across-transformation condition, the classifier was trained and
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ilar in responses and overall classification per-
formance. A: cumulative distributions for av-
erage firing rate of units during stimulus
presentation. Distribution of SRAF units
shown in red, A1 units shown in faint blue,
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in SRAF.
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tested in discriminating responses to vocalizations in original
form and one or all transformations. The difference between
within-transformation and the across-transformation classifier
performance was termed the generalization penalty. If the
neuronal population exhibited low invariance, we expected the
across-transformation performance to be lower than within-
transformation performance and the generalization penalty to
be high (Fig. 6A, top). If neuronal population exhibited high
invariance, we expected the across-transformation perfor-
mance to be equal to within-transformation performance and
the generalization penalty to be low (Fig. 6A, bottom).

To ensure that responses to a select transformation were not
skewing the results, we computed across-transformation per-
formance both for each of the transformations and for all
transformations. In per-transformation condition, the classifier
was trained and tested in discriminating responses to vocaliza-
tions in original form and under one other transformation. In
all-transformation condition, the classifier was trained and
tested in discrimination of responses to vocalizations in origi-
nal form and under all 8 transformations simultaneously.

Neuronal populations in A1 exhibited greater reduction in
performance on across-transformation condition compared to
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Fig. 6. Classifier performance on within-trans-
formation and across-transformation condi-
tions. A: schematic diagram of neuronal re-
sponses to 2 original (USV1, USV2) and
transformed (USV1*, USV2*) vocalizations.
Each dot denotes a population response vector
projected in a low-dimensional subspace. Left:
within-transformation classification: classifier
is trained and tested to classify responses
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classification: Classifier is trained and tested
to classify responses to vocalizations for orig-
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ously. Predictions of the hierarchical coding
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performance is low for A1 and high for SRAF,
reflecting an increase in invariance from A1 to
SRAF. B and C: performance when discrimi-
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within-transformation condition than neuronal population in
SRAF. Figures 6 and 7 present the comparison between across-
transformation performance and within-transformation perfor-
mance for each of the different conditions. Note that the
different conditions result in very different numbers of data
points: the per-transformation conditions have 8 times as many
data points as the all-transformation conditions, as the former
yields a separate data point for each transformation. Similarly,
the pairwise conditions yield 28 times as many data points as
the 8-way conditions (one for each unique pair drawn from the

8 vocalizations). As expected, for both A1 and SRAF, the
classification performance was higher for within-transforma-
tion than across-transformation condition (Fig. 6, B–E). How-
ever, the difference in performance between within-transfor-
mation and across-transformation conditions was higher in A1
than in SRAF: SRAF populations suffered a smaller general-
ization penalty under all conditions tested (Fig. 7), indicating
that neuronal ensembles in SRAF exhibited greater generaliza-
tion than in A1. This effect was present under both pairwise
(Fig. 6, B and C, and Fig. 7, A and B) and 8-way classification
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(Fig. 6, D and E, and Fig. 7, C and D), and for generalization
in per-transformation (Fig. 6, B and D, and Fig. 7, A and D,
pairwise classification, P � 0.028; 8-way classification, P �
1.9e�4; Wilcoxon paired sign-rank test; 60 units in each
ensemble tested) and all-transformation mode (Fig. 6, C and E,
and Fig. 7, B and E; pairwise classification, P � 1.4e�5;
8-way classification, P � 0.025; Wilcoxon paired sign-rank
test; 60 units in each ensemble tested). The greater generaliza-
tion penalty for A1 as compared to SRAF was preserved for
increasing number of neurons in the ensemble, as the discrim-
ination performance improved and the relative difference be-
tween across- and within- performance increased (Fig. 7, C and
F). Taken together, we find that populations of SRAF units are
better able to generalize across acoustic transformations of
stimuli than populations of A1 units, as characterized by linear
encoding of stimulus identity. These results suggest that pop-
ulations of SRAF neurons are more invariant to transforma-
tions of auditory objects than populations of A1 neurons.

DISCUSSION

Our goal was to test whether and how populations of
neurons in the auditory cortex represented vocalizations in an
invariant fashion. We tested whether neurons in the nonpri-
mary area SRAF exhibit greater invariance to simple acoustic
transformations than do neurons in A1. To estimate invariance
in neuronal encoding of vocalizations, we computed the dif-
ference in the ability of neuronal population codes to classify
vocalizations between different types following acoustic dis-
tortions of vocalizations (Fig. 1). We found that, while neuro-
nal populations in A1 and SRAF exhibited similar selectivity to
vocalizations (Figs. 3–5), neuronal populations in SRAF ex-
hibited higher invariance to acoustic transformations of vocal-
izations than in A1, as measured by lower generalization
penalty (Figs. 6 and 7). These results are consistent with the
hypothesis that invariance arises gradually within the auditory
pathway, with higher auditory areas exhibiting progressively
higher invariances toward basic transformations of acoustic sig-
nals. An invariant representation at the level of population neu-
ronal ensemble activity supports the ability to discriminate be-
tween behaviorally important sounds (such as vocalizations and
speech) despite speaker variability and environmental changes.

We recently found that rat ultrasonic vocalizations can be
parameterized as amplitude- and frequency-modulated tones,
similar to whistles (Carruthers et al. 2013). Units in the
auditory cortex exhibited selective responses to subsets of the
vocalizations, and a model that relies on the amplitude- and
frequency-modulation time course of the vocalizations could
predict the responses to novel vocalizations. These results
point to amplitude- and frequency modulations as essential
acoustic dimensions for encoding of ultrasonic vocalizations.
Therefore, in this study, we tested four types of acoustic
distortions based on basic transformations of these dimensions:
temporal dilation, frequency shift, frequency modulation scal-
ing and combined temporal dilation and frequency modulation
scaling. These transformations likely carry behavioral signifi-
cance and might be encountered when a speaker’s voice is
temporally dilated, or be characteristic of different speakers
(Fitch et al. 1997). While there is limited evidence that such
transformations are typical in vocalizations emitted by rats,
preliminary analysis of rat vocalizations revealed a large range
of variability in these parameters across vocalizations.

Neurons throughout the auditory pathway have been shown
to exhibit selective responses to vocalizations. In response to
ultrasonic vocalizations, neurons in the auditory midbrain ex-
hibit a mix of selective and nonselective responses in rodents
(Holmstrom et al. 2010; Pincherli Castellanos et al. 2007). At
the level of A1, neurons across species respond strongly to
conspecific vocalizations (Gehr et al. 2000; Glass and Woll-
berg 1983; Huetz et al. 2009; Medvedev and Kanwal 2004;
Pelleg-Toiba and Wollberg 1991; Wallace et al. 2005; Wang et
al. 1995). The specialization of neuronal responses for the
natural statistics of vocalization has been under debate (Huetz
et al. 2009; Wang et al. 1995). The avian auditory system
exhibits strong specialization for natural sounds and conspe-
cific vocalizations (Schneider and Woolley 2010; Woolley et
al. 2005), and a similar hierarchical transformation has been
observed between primary and secondary cortical analogs (Elie
and Theunissen 2015). In rodents, specialized responses to
USVs in A1 are likely context-dependent (Galindo-Leon et al.
2009; Liu et al. 2006; Liu and Schreiner 2007; Marlin et al.
2015). Therefore, extending our study to be able to manipulate
the behavioral “meaning” of the vocalizations through training
will greatly enrich our understanding of how the transforma-
tion that we observe contributes to auditory behavioral perfor-
mance.

A1 neurons adapt to the statistical structure of the acoustic
stimulus (Asari and Zador 2009; Blake and Merzenich 2002;
Kvale and Schreiner 2004; Natan et al. 2015; Rabinowitz et al.
2013; Rabinowitz et al. 2011). The amplitude of frequency
shift and frequency modulation scaling coefficient were chosen
on the basis of the range of the statistics of ultrasonic vocal-
izations that we recorded (Carruthers et al. 2013). These
manipulations were designed to keep the statistics of the
acoustic stimulus within the range of original vocalizations, in
order to best drive responses in A1. Psychophysical studies in
humans found that speech comprehension is preserved over
temporal dilations up to a factor of 2 (Beasley et al. 1980;
Dupoux and Green 1997; Foulke and Sticht 1969). Here, we
used a scaling factor of 1.25 or 0.75, similar to previous
electrophysiological studies (Gehr et al. 2000; Wang et al.
1995), and also falling within the statistical range of the
recorded vocalizations. Furthermore, we included a stimulus in
which frequency modulation scaling was combined with tem-
poral dilation. This transformation was designed in order to
preserve the velocity of frequency modulation from the origi-
nal stimulus. The observed results exhibit robustness to the
type of transformation that was applied to the stimulus, and are
therefore likely generalizable to transformations of other
acoustic features.

In order to quantify the invariance of population neuronal
codes, we used the performance of automated classifiers as a
lower bound for the information available in the population
responses to original and transformed vocalizations. To assay
generalization performance, we computed the difference be-
tween classifier performance on within- and across-transfor-
mation conditions. We expected this difference to be small for
populations of neurons that generalized, and large for populations
of neurons that did not exhibit generalization (Fig. 6A). Comput-
ing this measure was particularly important, as populations of A1
and SRAF neurons exhibited a great degree of variability in
classification performance for both within- and across-transfor-
mation classification (Fig. 6, B–E). This variability is consistent
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with the known details about heterogeneity in neuronal cell types
and connectivity in the mammalian cortex (Kanold et al. 2014).
Therefore, measuring the relative improvement in classification
performance using the generalization penalty overcomes the lim-
its of heterogeneity in performance.

In order to probe the transformation of representations from
one brain area to the next, we decided to limit the classifiers to
information that could be linearly decoded from population
responses. For this reason, we chose to use linear support
vector machines (SVMs, see METHODS) for classifiers. SVMs
are designed to find robust linear boundaries between classes of
vectors in a high-dimensional space. When trained on two sets
of vectors, an SVM finds a hyperplane (a flat, infinite bound-
ary) that provides the best separation between the two sets: a
hyperplane that divides the space in two, assigning every
vector on one side to the first set, and everything on the other
side to the second. In this case finding the “best separation”
means a trade-off between having as many of the training
vectors as possible be on the correct side, and giving the
separating hyperplane as large of a margin (the distance be-
tween the hyperplane and the closest correctly classified vec-
tors) as possible (Dayan and Abbott 2005; Vapnik 2000). The
result is generally a robust, accurate decision boundary that can
be used to classify a vector into one of the two sets. A linear
classification can be viewed as a weighted summation of
inputs, followed by a thresholding operation, a combination of
actions that is understood to be one of the most fundamental
computations performed by neurons in the brain (Abbott 1994;
deCharms and Zador 2000). Therefore, examination of infor-
mation via linear classifiers places a lower bound on the level
of classification that could be accomplished during the next
stage of neural processing.

Several mechanisms could potentially explain the increase in
invariance we observe between A1 and SRAF. As previously
suggested, cortical microcircuits in A1 can transform incoming
responses into a more feature-invariant form (Atencio et al.
2009). By integrating over neurons with different tuning prop-
erties, higher level neurons can develop tuning to more specific
conjunction of features (becoming more selective), while ex-
hibiting invariance to basic transformations. Alternatively,
higher auditory brain areas may be better able to adapt to the
basic statistical features of auditory stimuli, such that the
neuronal responses would be sensitive to patterns of spectro-
temporal modulation regardless of basic acoustic transforma-
tions. At the level of the midbrain, adaptation to the stimulus
variance allows for invariant encoding of stimulus amplitude
fluctuations (Rabinowitz et al. 2013). In the mouse inferior
colliculus, neurons exhibit heterogeneous response to ultra-
sonic vocalizations and their acoustically distorted versions
(Holmstrom et al. 2010). At higher processing stages, as
auditory processing becomes progressively multidimensional
(Sharpee et al. 2011), adaptation could produce a neural code
that could be more robustly decoded across stimulus transfor-
mations. More complex population codes may provide a
greater amount of information in the brain (Averbeck et al.
2006; Averbeck and Lee 2004; Cohen and Kohn 2011). Ex-
tensions to the present study could be used to distinguish
between invariance due to statistical adaptation, and invariance
due to feature independence in neural responses.

While our results support a hierarchical coding model for the
representation of vocalizations across different stages of the au-

ditory cortex, the observed changes may originate at the subcor-
tical level, e.g., inferior colliculus (Holmstrom et al. 2010) or
differential thalamocortical inputs (Covic and Sherman 2011), and
already should be encoded within specific groups of neurons or
within different cortical layers within the primary auditory cortex.
Further investigation including more selective recording and tar-
geting of specific cell types is required to pinpoint whether the
transformation occurs throughout the pathway or within the ca-
nonical cortical circuit.
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