
Predicting the Future with Transformational
States

Andrew Jaegle1, Oleh Rybkin1, Konstantinos G. Derpanis2,
and Kostas Daniilidis1

1University of Pennsylvania, 2Ryerson University
ajaegle@upenn.edu, oleh@cis.upenn.edu,

kosta@scs.ryerson.ca, kostas@cis.upenn.edu

Abstract. An intelligent observer looks at the world and sees not only
what is, but what is moving and what can be moved. In other words,
the observer sees how the present state of the world can transform in the
future. We propose a model that predicts future images by learning to
represent the present state and its transformation given only a sequence
of images. To do so, we introduce an architecture with a latent state
composed of two components designed to capture (i) the present image
state and (ii) the transformation between present and future states, re-
spectively. We couple this latent state with a recurrent neural network
(RNN) core that predicts future frames by transforming past states into
future states by applying the accumulated state transformation with a
learned operator. We describe how this model can be integrated into
an encoder-decoder convolutional neural network (CNN) architecture
that uses weighted residual connections to integrate representations of
the past with representations of the future. Qualitatively, our approach
generates image sequences that are stable and capture realistic motion
over multiple predicted frames, without requiring adversarial training.
Quantitatively, our method achieves prediction results comparable to
state-of-the-art results on standard image prediction benchmarks (Mov-
ing MNIST, KTH, and UCF101).

Keywords: Image prediction, motion, sequence modeling

1 Introduction

Humans and other animals are able to reason about the future state of the world
given visual observations of the present. Even as infants, humans can use images
to make informed predictions of how objects and agents will move and act in
the future [1]. A large body of evidence from the neural and cognitive sciences
suggests that humans build predictive models of the world and use the resulting
predictions to guide action and to learn better ways of engaging with the world

https://daniilidis-group.github.io/transformational_states

ar
X

iv
:1

80
3.

09
76

0v
1

 [
cs

.C
V

]
 2

6
M

ar
 2

01
8

https://daniilidis-group.github.io/transformational_states

2 Jaegle, Rybkin, Derpanis, and Daniilidis

Schematic view: train with transformations so reconstructive state is more predictable.
Top row are images in a sequence; bottom row are other close images to the middle image that
are not in the sequence (red, going backwards; orange, different scene; yellow, different person.
For nonrigid transformations like these, static image based embeddings have no reason to
structure the images such that temporal changes correspond to simple transformations in the
latent space. By structuring the latent to focus on prediction, we encourage the latent to capture
this predictable structure.

Should show good
predictions from
KTH, UCF, and MNIST
alongside this
as a first figure.

g1:2

g2:3

St
at

ic
 e

m
be

dd
in

g

Tr
an

sf
or

m
at

io
na

l
em

be
dd

in
g

Natural image sequence

Similar images not in the sequence

(A) (B)
Ground truth

Prediction

(i) (ii) (iii)

(iv) (v) (vi)

Prediction from 10 frame input
(last input frame shown)

s2

s3s2

s3

s1 s1

Fig. 1: (A) This work is motivated by the observation that image transforma-
tions may be more easily modeled by a network that learns to transform la-
tent states rather than transform or associate pixel intensities. By learning to
model states, s, along with transformations between states, g, the RNN is en-
couraged to model sequences not by memorizing arbitrary transitions between
certain images (static embedding) but by reshaping the embedding so that nat-
ural state transformations are predictable (transformational embedding). Figure
best viewed in color. (B) Sample predictions of our model on sequences from the
Moving MNIST and KTH datasets. We show only the last of 10 input images for
visualization purposes. Our model produces good image predictions using only
pixel-wise reconstruction losses.

[2]. The world is filled with image sequences, and it is clear that intelligent agents
might use the rich dynamics of visual stimuli to guide learning. But how agents
should learn to predict effectively remains an important computational problem.

The focus of this paper is the prediction of future images given a sequence of
past images. Image prediction offers a general approach to tackling the challenge
of state prediction in vision because it is not tied to a specific task or represen-
tation. By predicting images instead of task-dependent representations such as
labels or segmentations, the agent gains more flexibility in how it uses informa-
tion about the future. From this perspective, image prediction offers a unique
opportunity for unsupervised visual representation learning, as image-level pre-
dictions can be used as a learning signal even in the absence of well-defined tasks
or task-conditional reward signals.

Motion prediction is at the heart of future prediction in temporally contigu-
ous video. Over short periods of time, scenes in the real world contain a slowly
changing context and set of objects. Future frames can largely be predicted by
modeling the motion of objects and the scene: that is, by transforming the cur-
rent state into future states. Our work is motivated by the observation that
learning states that can be transformed to produce future states may lead to

Predicting the Future with Transformational States 3

representations that are easier to predict, as illustrated in Figure 1(A). Other
methods that use motion for prediction typically rely on the assumption that
image transformations can be modeled with local, piecewise translational mo-
tion. However, such methods struggle with scenes containing flexible objects like
human bodies (e.g. the one shown in Figure 1(A)), due to the self-occlusion and
non-rigid deformations that such objects introduce. Here, we propose a model
that makes predictions by transforming latent representations, and which can
reason about transformations that are more complex than simple pixel transla-
tions.

To predict realistic images, a model of sequence transformations must also
capture the appearance and texture of the scene as it transforms. This includes
the content of image regions that appear or become dis-occluded over time. A
model must capture the appearance of the foreground and background to paint
in details of image regions that are revealed as the objects and scene move. A
useful future image prediction model needs to model both this static state and
its transformations to ensure that individual frames are realistic and that objects
and the scene move realistically. Here, we show how to integrate weighted residual
connections into our network to produce good models of background texture and
other static scene content.

We propose to predict a latent state representation that encodes both the
current state of the scene and its transformation and that can be decoded to
produce future images. Our method learns representations of states and trans-
formations that are stable and sufficiently rich to produce multiple future frames
without re-encoding estimated frames or repeatedly copying pixels from the in-
put sequence. Our architecture learns to capture naturalistic motion in a variety
of settings (synthetic and real) with minimal modifications. Our model achieves
quantitative results competitive with the state of the art without assuming a
static background (or stabilized preprocessing), without being constrained to di-
rectly copying or translating pixels from input frames, and without adversarial
learning.

Our technical contributions are as follows:

– a novel RNN core formulation with a partitioned representation of latent
states and transformations;

– a weighted, temporal residual connection that enables stably reconciling fea-
tures across multiple time steps without re-encoding images;

– an encoder-decoder architecture that can be stably trained for good end-to-
end image prediction without an adversarial loss.

2 Related work

There is a growing interesting in predicting future imagery conditioned on past
observations. This body of work leverages large, unlabeled video datasets to learn
to make predictions. Prior work has explored a variety of aspects of the problem.
Here, we present an overview of prior work organized by the level of abstraction

4 Jaegle, Rybkin, Derpanis, and Daniilidis

of the target output, the generative process, the structure of the latent represen-
tation, and the loss function guiding learning. To further aid interpretation of
the present work, we compare the specific design choices of a range of recently
proposed models in Supplementary Table 1.

Prediction targets At the prediction output level, a variety of representa-
tional levels have been targeted. At the highest level, several works have consid-
ered predicting semantic segmentation of frames [3], deep visual image represen-
tations of frames [4], human pose [5,6,7] and human actions [8,9]. Others have
considered mid-level representation outputs, such as optical flow [10,11]. At the
lowest and most general level, a growing body of research has explored predicting
the pixel intensities of future frames [12,13,14,15,16,17,18,19,20,21,22,23]. In this
paper, we propose a method to predict frame-wise pixel intensities by recurrently
transforming image representations into the future.

Prediction and transformation A key differentiating aspect between prior
work is the generative process. Inspired by encoder-decoder language models (e.g.
[24]), [12,13] consider a recurrent network that encodes an input sequence into a
fixed length vector and a subsequent recurrent network that decodes the vector
to progressively generate predicted frames. Others have considered a more direct
approach that predicts future frames from observed frames using a convolutional
neural network (CNN) [14,3]. Several other works have proposed copying or ap-
plying simple transformations to past pixels to generate image frame predictions
[25,26,18,17,27]. In contrast, we predict future images by transforming and de-
coding the latent space, rather than by directly predicting future frames or by
copying or transforming past pixels.

Factored representations Another line of recent work has approached the
problem of prediction by factoring the representation of the latent information
or shaping the latent to learn properties useful for prediction. Vondrick et al. [15]
factor the generative process into separate foreground and background streams
that are combined to create the final video. Goroshin et al. [28] train a linearized
latent space so that future prediction can be treated as linear interpolation. Sev-
eral works [21,29] have considered predicting human pose and then conditioning
image generation on the predicted pose. These models can achieve impressive
results, but they assume latents with known structure (i.e. 2D poses) and are
thus limited to human-focused imagery. Our method assumes only that learned
representations can be transformed by a learned operator and is not restricted
to settings where the latent space can be explicitly labeled.

Predicting with motion and content Most similar to our work are two
approaches that factor the latent information to capture scene appearance and
dynamics [30,16]. Denton et al. [30] learn separate representations of content and
pose and predict future frames by fixing the content and estimating the future
pose. This model produces very stable predictions, but it assumes content does
not change over a sequence. This limits its applicability to scenes with camera
motion and dynamic content. Our method does not assume fixed scenes, but
instead learns a representation of state and motion that is designed to accom-
modate a variety of transformations while still preserving image structure.

Predicting the Future with Transformational States 5

Villegas et al. [16] learn representations of content and motion by feeding
two networks with images and difference images, respectively. They train their
method with an adversarial loss and need to re-encode predictions to generate
more than one future frame. While their method incorporates motion into the
representation by splitting the input into images and difference images and di-
rectly predicting next frames, our method learns to represent both states and
transformations from frames and learns motion by applying transformations to
states. Our method produces good results without adversarial training or image
re-encoding.

Loss functions Previous work has proposed to improve future prediction
by designing loss functions to guide learning to better solutions. While earlier
work uses standard pixel-wise reconstruction losses like the mean-squared error
(MSE) or binary cross entropy (BCE) loss function [13], more recent work (e.g.,
[14,17,31,32]) often incorporates some form of generative adversarial network
(GAN) model [33], either alone or in conjunction with a reconstruction loss,
such as MSE. While GANs can produce crisp predictions, they are notoriously
hard to train and model convergence is difficult to evaluate [34]. In this paper,
we demonstrate that a simple MSE loss is capable of generating good predictions
when paired with an appropriately structured architecture.

3 Technical approach

In future prediction, we are given a sequence of T images {I1, ..., IT } and want
to produce the most likely sequence of K future images {IT+1, ..., IT+K}. We
seek to do so by capturing how the structure of the image transforms over time.

Images are high dimensional but the pixel space dimension does not reflect
the intrinsic dimensionality of the scene. For example, a 64 × 64 image of two
translating digits lives in a pixel space of the same dimensionality as a 64 × 64
image of a walking person. However, the latter image contains scene content with
many more degrees of freedom so its intrinsic dimensionality is higher. Similarly,
a 128× 128 and a 64× 64 image of the same walking person both depict content
with the same degrees of freedom (up to appearance details lost in downsam-
pling), but with very different pixel dimensions. When we predict images, we
must predict pixels, but we seek to do so by modeling the transformation of the
images’ content.

Accordingly, we model the instantaneous state of the scene at time t using
a latent variable st. Because we do not know the state of future frames, we
seek to transform past latent variables {s1, ..., sT } to estimate the future latents
{sT+1, ..., sT+K}. Future latents depend on previously estimated future latents,
so we model this estimation process with a function f , such that the estimate
at time k, where 1 ≤ k ≤ K, is given by

ŝt = f({s1, ..., sT , ŝT+1, ..., ŝT+k−1}). (1)

6 Jaegle, Rybkin, Derpanis, and Daniilidis

CNNΦ

Conv
LSTM

st dt

st+1

gt:t+1

Sequence
encoding (past)

Sequence
decoding (future)

sT+1
sT+2

ds s d

Should note that in the future, m_t is not estimated, so we use only
the history for future transformations.

(A)

CNNe CNNd

RNN
core

(B)

ITIT-1

Fig. 2: Architecture overview. (A) Our model uses an encoder-decoder sequence-
to-sequence architecture with a factorized latent that captures the image state, s,
and transformation, d. Residual connections are omitted for clarity; see the text
and Figure 3 for details. (B) Future states are transformed from past states using
an RNN core that accumulates the transformation estimate g with a ConvLSTM
and applies it to the recursively estimated state s with an operator CNNΦ.

In the context of image prediction, such a function is typically parameterized
with a recurrent neural network (RNN) applied to the output of the encoder of
an encoder-decoder architecture [13]:

ÎT+k = CNNd(ŝT+k) (2)

ŝT+k = RNN({s1, ..., sT , ŝT+1, ..., ŝT+k−1}) (3)

st = CNNe(It), (4)

where ŝt is the estimated latent state at time t, Ît is the estimated image at
time t, and CNNe and CNNd are encoder and decoder CNNs, respectively. This
is illustrated in Figure 2(A).

While such structures can in principle learn to model arbitrary transforma-
tions [35], these models often struggle to produce realistic image transformations.
In practice, these models may learn to memorize transformations as arbitrary
mappings from state to state (as illustrated schematically in Figure 1(A)) rather
than representing transformations as predictable, generalizable mappings like
those that characterize the natural transformations between world states.

We now describe how we encourage the network’s latent state to learn more
predictable mappings by jointly learning representations of state and transfor-
mations.

Predicting the Future with Transformational States 7

3.1 Transformational states

To encourage an encoder-decoder structure to learn to model predictable latent
space transformations, we introduce an additional latent variable dt to capture
the evidence available for estimating the transformation from each input image.
The output of the encoder CNN at each time step can then be written as

st, dt = CNNe(It). (5)

Next, we describe how we encourage the network to exploit the factorization
in (5) by wiring the network so that transformational states dt cannot directly
predict images but must act by transforming states st.

We want the dt to capture all information that is available from It about the
transformation from state st to st+1. Let us call this transformation gt:t+1. While
individual images provide some information about how the world will move, in
general they are insufficient to model the full transformation from t to t+ 1 and
to later points in the future.

To see this, consider the person in image (i) of Figure 1(A). From this world
state, transformations in time are unlikely to produce image (v), which shows the
same person in a different scene, or image (vi), which shows a different person in
a similar position. However, the person in image (i) might move his arms closer
together (producing image (ii)) or further apart (producing image (iv)). Given
image (i) and (ii), however, image (iii) becomes much more likely than image
(iv).

That is, the transformation that can be estimated from a single image (dt)
will not in general be equivalent to the true state transformation (gt:t+1). How-
ever, some information about the transformational state of the world is observ-
able from a single image, and we can arrive at better estimates by integrating
transformation estimates over time. Accordingly, we use an RNN to incorporate
the history of instantaneous transformation estimates dt and the accompanying
states st to obtain a better estimate of the transformation gt:t+1 acting on st:

gt:t+1 = RNN({[d1, s1], ..., [dt, st]}). (6)

We then model the action of this transformation on latent states as

st+1 = Φ(gt:t+1, st), (7)

where Φ is an operator that transforms st by applying gt:t+1. We parameterize
Φ with a three-layer CNN (with no recurrence), and we parameterize the RNN
with a three-layer convolutional long short-term memory (convLSTM) model.
We show the full recurrent core, including the CNN operator and transformation
RNN in Figure 2(B).

We next describe how we integrate skip connections into the model to en-
courage long-term stability and fidelity of image production while the state is
undergoing transformations.

8 Jaegle, Rybkin, Derpanis, and Daniilidis

IT

IT+1 IT+2(A)

Zt-1
Yt

1-σ σ

Conv

Zt

...

... ...

(B)

Fig. 3: Weighted residual connections. (A) To produce high quality images at
multiple time steps in the future without re-encoding images, we use a residual
connection scheme designed to gradually alter image content from the last ob-
served input image. Residual connections connect the encoder at time T (last
input) to the decoder at time T + 1 (first output). At subsequent times, the
decoder inherits information about the past from the decoder at the previous
time only. The network has this connectivity pattern at every layer: we show
only two decoder layers and the output image for easier visualization. (B) We
use a retinotopic weighting scheme to allow each layer of a decoding network to
selectively incorporate skipped input from the past. Weights and feature maps
at time t are functions of the predicted latent state ŝt at time t.

3.2 Weighted residual connections

Recent works [30,16,26] have found that skip connections from encoder to de-
coder networks are essential for producing high quality image outputs, especially
for capturing high-frequency information of textures and background. However,
when encoded images are in the past and decoded images are in the future,
this paradigm is limited in several ways. First, future encoder states cannot be
used as a source of skipped image information without first re-encoding esti-
mated images. This may lead to difficulties in CNN/RNN training because of
mismatched statistics between true and estimated frames. Second, skipping from
past states to future ones can introduce artifacts when static features are copied
as if nothing in the scene has changed. This can result in ghosting artifacts that
are difficult for the network to learn to correct.

We introduce a mechanism for passing information forward from the encoder
state at the last input time step to the decoder at future time steps without re-
encoding predictions and without repeatedly copying activations from the past
(Figure 3). Instead of copying activations from the encoder to the decoder at
all future times, we connect the encoder at the last input time step only to the
decoder at the first prediction time step. Subsequent decoder time steps take
the activations of the decoder at the previous time step and re-weight them.
This configuration allows features to flow forward in time from the last input

Predicting the Future with Transformational States 9

Fig. 4: Example sequences on Moving MNIST. For all three examples, the first
row shows the input sequence (past), the second row shows the ground truth
future, and the third row shows the predicted sequence. Our model is able to
stably predict digits over multiple timesteps, even when digits overlap for mul-
tiple frames.

time step, while allowing features to change as necessary to reflect motion and
without requiring images to be re-encoded.

The initial feature map Y lt output by layer l of the decoder network at time
t is combined with skipped output Zlt−1 from the previous time step in the form
of a weighted residual connection:

Zlt = (1− σ(W l))� Y lt + σ(W)� Zlt−1, (8)

10 Jaegle, Rybkin, Derpanis, and Daniilidis

Model average, 10 predicted frames first frame prediction

ConvLSTM [37] 367.2 -
Encoder-Decoder LSTM [13] 341.2 -
Dynamic Filter Networks [25] 285.2 -

Spatiotemporal Autoencoder [27] - 179.8
Video Pixel Networks [19] 87.6 -

Video Ladder Networks [23] 187.7 -
Ours 210.1 172.4

Table 1: Comparison of binary cross-entropy (BCE) results (nats/frame) on the
Moving MNIST test set. Lower scores indicate better performance.

where � denotes element-wise multiplication. Zlt is the final output of the net-
work at layer l at time t. W l

t (a weight map) is the output of a 1×1 convolution
with Y lt as input. We output one weight value for each spatial position of the
feature map and broadcast the weight to all channels to perform the elementwise
multiplication. This weighting strategy introduces only Kl + 1 parameters per
layer, where Kl is the number of channels in Y l.

For the first prediction time step, the skip inputs Zlt−1 come from the layer of
the encoder network at the last input time step with matching spatial dimension.
Otherwise, they come from the corresponding layer in the decoder at time t− 1.
The weighting scheme is shown in Figure 3(A). This configuration is similar to
the one introduced in [36], applied at each time step.

When paired with our network architecture, this skip configuration allows us
to estimate future images without re-encoding estimated images into the encoder
CNN. Because subsequent time steps inherit the activations of the previous
decoder state, and do not directly copy the states of the last encoder (as in e.g.
[38]), we observed that these networks trained more quickly and resulted in fewer
ghosting artifacts.

We incorporate a similar weighted residual scheme to directly skip the last
input image to future timesteps. As with feature maps, for all times t > T + 1
we skip the image from the previous timestep t − 1 instead of the last input
image IT . Directly skipping the final input image to later time steps resulted
in lower quality outputs (see Supplemental Figures 2 and 3 for examples). We
also observed that the residual connection works best when the weighting is
applied after the tanh nonlinearity in both images. Weighting before the output
nonlinearity led to saturated images at later prediction time steps.

4 Experiments

4.1 Datasets

We performed experiments on three datasets: a standard synthetic dataset, Mov-
ing MNIST [13], and two real world datasets, KTH actions [39] and UCF101 [40].
Moving MNIST is a dataset of synthetic videos, with an arbitrarily large training

Predicting the Future with Transformational States 11

Model
PSNR SSIM

at time 1 average over 10 frames at time 1 average over 10 frames

ConvLSTM [16] 33.8 27.6 0.95 0.84
MCNet [16] 33.8 28.2 0.95 0.86

Ours 34.8 29 0.95 0.86

Table 2: Comparison of frame prediction results on the KTH test set. Higher
scores indicate better performance.

Model PSNR SSIM

EpicFlow [41] 29.1 0.91
NextFlow [42] 29.9 -

BeyondMSE [14] 28.2 0.89
DVF [18] 29.6 0.92

Dual Motion GAN [20] 30.5 0.94
Ours 28.3 0.88

Table 3: Comparison of next frame prediction results on the UCF101 test set
(split 1). Higher scores indicate better performance.

set (videos are generated procedurally) and a test set of 10,000 videos. Each video
has an image resolution of 64×64 and is 20 frames in length. The videos capture
two digits moving in random directions and with random velocities. KTH con-
sists of 2391 videos capturing six human actions: boxing, hand clapping, hand
waving, jogging, running, and walking. As is standard practice in prior work on
frame prediction using KTH, we convert the images to 128 × 128 prior to pro-
cessing. All sequences contain scenes with relatively homogeneous backgrounds.
The scenes were captured with a static camera at 25 frames per second. UCF101
contains 13,320 YouTube videos capturing 101 human actions. As done in pre-
vious evaluations using UCF101, we convert the images to 256 × 256 prior to
processing. Notably, many UCF101 videos contain spatial and temporal (i.e.
duplicate frames) artifacts due to compression.

4.2 Architecture and training details

The Moving MNIST and KTH networks were trained to predict 10 frames given
10 input frames and UCF101 networks were trained to predict 1 frame given
2 input frames (to allow us to compare to the compendium of state-of-the-art
results in [20]). On all datasets probed, we trained the network end-to-end using
an average pixel-wise reconstruction loss between the estimated sequences and
ground truth future sequences. We use an MSE loss for KTH and UCF1010
and a BCE loss for Moving MNIST. All networks were trained using stochastic
gradient descent (SGD) with momentum. We used a starting learning rate of 1
on KTH and UCF101 and 10 on Moving MNIST. We decayed learning rates by a

12 Jaegle, Rybkin, Derpanis, and Daniilidis

(A) Walking

(B) Running

(C) Hand waving

Fig. 5: Example sequences on KTH. For all three examples, the first row shows
the input sequence (past), the second row shows the ground truth future, and
the third row shows the predicted sequence. The model produces faithful motion
in a variety of settings and is able to paint in the background after dis-occlusion.

factor of 10 every time the validation loss reached a plateau, until convergence.
We used a momentum value of β = 0.5 in all cases. We used a weight decay
of 1× 10−4 for encoder and decoder weights on all networks, and we included
dropout with a rate of 0.5 in all hidden layers of encoder networks on UCF101
and KTH.

We used horizontal mirroring and random cropping for data augmentation
on both UCF101 and KTH datasets. We trained on Moving MNIST with 50

Predicting the Future with Transformational States 13

Fig. 6: Example sequences on UCF101. For each example, we show two frames
from the past followed by the ground truth third frame and the third frame
predicted by the model from the first two images.

sequences per batch, on KTH with 20 sequences per batch, and on UCF101
with 10 sequences per batch.

The convolutional architectures used on all three datasets are based on the
DCGAN architecture [43]. Each layer of the decoder except for the input layer
contains the same number of channels as the corresponding layer of the encoder
architecture. Because the decoder does not take the transformational latent as
input, the decoder input is of size 4× 4×Ns, while the encoder output is of size
4×4×(Ns+Ns), where Ns is the number of channels in the state latent s and Nd
is the number of channels in the transformational latent d. In all architectures
used here, Ns = Nd. We did not perform hyperparameter search for the values
of Ns and Nd or the architectures used for encoders and decoder CNNs, and it
is likely that better results can be obtained using optimized settings.

The architectures we use on Moving MNIST, KTH, and UCF101 differ only
in the number of layers and the number of filters per layer in the encoder and
decoder CNNs. Architecture depths were chosen so that the spatial size the
encoder output (and decoder input) was 4 × 4. We specify full architectures in
the supplemental material (supplemental section 2). We will make the model
code and trained models available upon paper acceptance.

4.3 Evaluation

It is difficult to quantitatively evaluate prediction results because reconstruction
errors and other measures do not generally fully capture the perceptual quality of
reconstructed images [44,45,14]. Nonetheless, quantitative evaluations can give

14 Jaegle, Rybkin, Derpanis, and Daniilidis

a reasonable indication of the average quality of a method when seen alongside
the qualitative results the method produces.

We evaluate our methods using the error measures most commonly used in
the literature: binary cross entropy for Moving MNIST [13] and peak signal to
noise ratio (PSNR) and Structural Similarity (SSIM) [45] for KTH and UCF101.
We evaluate SSIM using a window of 7x7 pixels with uniform weighting (the same
parameters as [30]).

We show quantitative results for Moving MNIST in Table 1, KTH in Table
2, and UCF in Table 3. In all cases, our results are competitive with state of
the art. Because of the large number of architectures and loss configurations in
the literature, it is infeasible to thoroughly test all architecture and loss config-
urations. We report results based on the numbers used in the literature. To aid
interpretation of our results in the context of the sequence prediction literature,
we include a table comparing the different architectural and loss configurations
in the supplement (Supplementary Table 1).

We show sample qualitative results on the three datasets in Figure 4 (Mov-
ing MNIST), Figure 5 (KTH), and Figure 6 (UCF). Our method produces rea-
sonable results with good motion in many of settings in these three datasets.
The output of dynamic models are difficult to evaluate based on static images
alone, and consequently the results of our method are best understood by exam-
ining the videos on the project website (https://daniilidis-group.github.
io/transformational_states). To aid interpretion of our results, we also show
failure cases on KTH in Figure 7. Additionally, we show prediction results pro-
duced by models with network ablations in the supplement: ablations on Moving
MNIST are shown in Supplementary Figure 1 and ablations on KTH are shown
in Supplementary Figures 2 and 3. Ablation results are shown on random se-
quences from the test data in all cases for fair comparison.

5 Summary

We have described a model for predicting sequences of future images using an
architecture that learns latent states and their transformations to future states.
We show how to couple this architecture with weighted residual connections
from past to future time steps to produce images that are stable after recursive
transformations. The resulting network can be trained to predict reasonable
results on synthetic and real datasets without requiring direct pixel copying or
a GAN. Our model produces good qualitative results and achieves quantitative
results comparable to state-of-the-art on several image prediction datasets.

Acknowledgments We thank Kenneth Chaney and Nikos Kolotouros for com-
puting support, Stephen Phillips for helpful comments, and the members of the
Daniilidis group and the vision community at Penn for many fruitful discussions.
We are grateful for support through the following grants: NSF-DGE-0966142
(IGERT), ARL RCTA W911NF-10-2-0016, and ONR N00014-17-1-2093. K.G.D.
is supported by a Canadian NSERC Discovery grant.

https://daniilidis-group.github.io/transformational_states
https://daniilidis-group.github.io/transformational_states

Predicting the Future with Transformational States 15

(A) Boxing

(B) Running

(C) Walking

Fig. 7: Example failure cases on KTH. (A) The model outputs a blurry motion
sequence that does not correspond to the ground truth. (B) The model fails to
correctly predict motion or paint in the background when the moving object
occupies only a small part of the image. (C) The model fails to correctly paint
in the background after the foreground moves, leading to ghosting artifacts.

16 Jaegle, Rybkin, Derpanis, and Daniilidis

References

1. Spelke, E., Phillips, A., Woodward, A.: Infants knowledge of object motion and
human action. Causal Cognition: A Multidisciplinary Debate (1996)

2. Bubic, A., Von Cramon, D.Y., Schubotz, R.: Prediction, cognition and the brain.
Frontiers in Human Neuroscience 4 (2010)

3. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into
the future of semantic segmentation. In: ICCV. (2017) 648–657

4. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from
unlabeled video. In: CVPR. (2016) 98–106

5. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for
human dynamics. In: ICCV. (2015) 4346–4354

6. Bütepage, J., Black, M.J., Kragic, D., Kjellström, H.: Deep representation learning
for human motion prediction and classification. In: CVPR. (2017) 1591–1599

7. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent
neural networks. In: CVPR. (2017) 4674–4683

8. Nguyen, M.H., la Torre, F.D.: Max-margin early event detectors. IJCV 107(2)
(2014) 191–202

9. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In:
ECCV. (2012) 201–214

10. Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: ECCV.
(2010) 707–720

11. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static
image. In: ICCV. (2015) 2443–2451

12. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video
(language) modeling: a baseline for generative models of natural videos. arXiv
e-Prints (2014)

13. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video
representations using LSTMs. In: ICML. (2015) 843–852

14. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. In: ICLR. (2016)

15. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics.
In: NIPS. (2016) 613–621

16. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content
for natural video sequence prediction. In: ICLR. (2017)

17. Vondrick, C., Torralba, A.: Generating the future with adversarial transformers.
In: CVPR. (2017) 2992–3000

18. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: ICCV. (2017) 4473–4481

19. Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O.,
Graves, A., Kavukcuoglu, K.: Video pixel networks. In: ICML. (2017) 1771–1779

20. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded
video prediction. In: ICCV. (2017) 1762–1770

21. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting
by generating pose futures. In: ICCV. (2017) 3352–3361

22. Lotter, W., Kreiman, G., Cox, D.D.: Deep predictive coding networks for video
prediction and unsupervised learning. In: ICLR. (2017)

23. Cricri, F., Ni, X., Honkala, M., Aksu, E., Gabbouj, M.: Video Ladder Networks.
ArXiv e-prints (December 2016)

Predicting the Future with Transformational States 17

24. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS. (2014) 3104–3112

25. Brabandere, B.D., Jia, X., Tuytelaars, T., Gool, L.V.: Dynamic filter networks.
In: NIPS. (2016) 667–675

26. Finn, C., Goodfellow, I.J., Levine, S.: Unsupervised learning for physical interac-
tion through video prediction. In: NIPS. (2016) 64–72

27. Pătrăucean, V., Handa, A., Cipolla, R.: Spatio-temporal video autoencoder with
differentiable memory. In: ICLR Workshop. (2016)

28. Goroshin, R., Mathieu, M., LeCun, Y.: Learning to linearize under uncertainty.
In: NIPS. (2015) 1234–1242

29. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate
long-term future via hierarchical prediction. In: ICML. (2017) 3560–3569

30. Denton, E.L., Birodkar, V.: Unsupervised learning of disentangled representations
from video. In: NIPS. (2017) 4417–4426

31. Lu, C., Hirsch, M., Schölkopf, B.: Flexible spatio-temporal networks for video
prediction. In: CVPR. (2017) 2137–2145

32. Zeng, K., Shen, W.B., Huang, D., Sun, M., Niebles, J.C.: Visual forecasting by
imitating dynamics in natural sequences. In: ICCV. (2017) 3018–3027

33. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: NIPS. (2014)
2672–2680

34. Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. (June 2017)
35. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.

Comput. Syst. Sci. 50(1) (1995) 132–150
36. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. In: ICML Deep

Learning Workshop. (2015)
37. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional

LSTM network: A machine learning approach for precipitation nowcasting. In:
NIPS. (2015) 802–810

38. Denton, E., Fergus, R.: Stochastic Video Generation with a Learned Prior. ArXiv
e-prints (February 2018)

39. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM
approach. In: ICPR. (2004) 32–36

40. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions
classes from videos in the wild. ArXiv e-prints (Nov 2012)

41. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-preserving
interpolation of correspondences for optical flow. In: CVPR. (2015) 1164–1172

42. Sedaghat, N.: Next-flow: Hybrid multi-tasking with next-frame prediction to boost
optical-flow estimation in the wild. arXiv e-Prints (Dec 2016)

43. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. In: ICLR. (2016)

44. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative
models. In: ICLR. (2016)

45. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13(4) (April 2004) 600–612

46. Ebert, F., Finn, C., Lee, A.X., Levine, S.: Self-supervised visual planning with
temporal skip connections. In: CoRL. (2017)

Supplemental material: Predicting the Future
with Transformational States

1 Video results

In videos included on the project website (https://daniilidis-group.github.
io/transformational_states), we visualize prediction results from our model
on a large number of sequences from Moving MNIST, KTH, and UCF101. Videos
are chosen randomly from the three datasets. In all cases, we show the full se-
quence given as input to the network (10 frames for Moving MNIST and KTH,
2 frames for UCF101) and the ground truth future sequence along with the net-
work prediction (10 frames for Moving MNIST and KTH, 1 frame for UCF101).
Videos are looped and the frames predicted by the network are highlighted in
green for clarity.

2 Network architectures

Full architectures for CNN encoders, CNN decoders, and the two components of
the full RNN core (CNNΦ and RNN) are given for the three datasets below. Pa-
rameters for convolutional (Conv), transposed convolutional (TransposedConv),
and convolutional LSTM (ConvLSTM) layers are specified as {input feature map
spatial dimensions, filter size, number of filters, convolution stride}. Other net-
work elements either have no parameters (tanh and sigmoid activation functions)
or always use the default Tensorflow parameter settings (batch norm (BN), leaky
rectified linear unit (LReLU)).

Network components are wired together as in Figure 2. Weighted residual
connections are used identically in the KTH and UCF architectures. The Moving
MNIST architecture omits the residual connection to the output image, but is
otherwise identical. Note that CNN encoders and CNNΦ components include an
output tanh nonlinearity to make it easier for the network to match their output
distributions to that of a ConvLSTM.

https://daniilidis-group.github.io/transformational_states
https://daniilidis-group.github.io/transformational_states

Predicting the Future with Transformational States 19

Moving MNIST:

Encoder

Conv{64× 64, 4× 4, 64, 2} → LReLU→
Conv{32× 32, 4× 4, 64, 2} → BN→ LReLU→
Conv{16× 16, 4× 4, 96, 2} → BN→ LReLU→
Conv{8× 8, 4× 4, 96, 2} → BN→ LReLU→
Conv{4× 4, 4× 4, 128, 1} → BN→ tanh

Decoder

TransposedConv{4× 4, 4× 4, 96, 2} → BN→ LReLU→
TransposedConv{8× 8, 4× 4, 96, 2} → BN→ LReLU→
TransposedConv{16× 16, 4× 4, 64, 2} → BN→ LReLU→
TransposedConv{32× 32, 4× 4, 64, 2} → BN→ LReLU→
TransposedConv{64× 64, 4× 4, 1, 1} → sigmoid

RNN

ConvLSTM{4× 4, 3× 3, 64, 1} →
ConvLSTM{4× 4, 3× 3, 64, 1} →
ConvLSTM{4× 4, 3× 3, 64, 1}
CNNΦ

Conv{4× 4, 4× 4, 64, 1} → LReLU→
Conv{4× 4, 4× 4, 64, 1} → LReLU→
Conv{4× 4, 4× 4, 64, 1} → tanh

KTH:

Encoder

Conv{128× 128, 4× 4, 64, 2} → LReLU→
Conv{64× 64, 4× 4, 128, 2} → BN→ LReLU→
Conv{32× 32, 4× 4, 256, 2} → BN→ LReLU→
Conv{16× 16, 4× 4, 512, 2} → BN→ LReLU→
Conv{8× 8, 4× 4, 512, 2} → BN→ LReLU→
Conv{4× 4, 4× 4, 256, 1} → BN→ tanh

Decoder

TransposedConv{4× 4, 4× 4, 512, 2} → BN→ LReLU→
TransposedConv{8× 8, 4× 4, 512, 2} → BN→ LReLU→
TransposedConv{16× 16, 4× 4, 256, 2} → BN→ LReLU→
TransposedConv{32× 32, 4× 4, 128, 2} → BN→ LReLU→
TransposedConv{64× 64, 4× 4, 64, 2} → BN→ LReLU→
TransposedConv{128× 128, 4× 4, 1, 1} → tanh

RNN

ConvLSTM{4× 4, 3× 3, 128, 1} →
ConvLSTM{4× 4, 3× 3, 128, 1} →
ConvLSTM{4× 4, 3× 3, 128, 1}
CNNΦ

Conv{4× 4, 4× 4, 128, 1} → LReLU→
Conv{4× 4, 4× 4, 128, 1} → LReLU→
Conv{4× 4, 4× 4, 128, 1} → tanh

20 Jaegle, Rybkin, Derpanis, and Daniilidis

UCF:
Encoder
Conv{256× 256, 4× 4, 64, 2} → LReLU→
Conv{128× 128, 4× 4, 128, 2} → BN→ LReLU→
Conv{64× 64, 4× 4, 256, 2} → BN→ LReLU→
Conv{32× 32, 4× 4, 256, 2} → BN→ LReLU→
Conv{16× 16, 4× 4, 512, 2} → BN→ LReLU→
Conv{8× 8, 4× 4, 512, 2} → BN→ LReLU→
Conv{4× 4, 4× 4, 512, 1} → BN→ tanh
Decoder
TransposedConv{4× 4, 4× 4, 512, 2} → BN→ LReLU→
TransposedConv{8× 8, 4× 4, 512, 2} → BN→ LReLU→
TransposedConv{16× 16, 4× 4, 256, 2} → BN→ LReLU→
TransposedConv{32× 32, 4× 4, 256, 2} → BN→ LReLU→
TransposedConv{64× 64, 4× 4, 128, 2} → BN→ LReLU→
TransposedConv{128× 128, 4× 4, 64, 2} → BN→ LReLU→
TransposedConv{256× 256, 4× 4, 1, 2} → tanh
RNN
ConvLSTM{4× 4, 3× 3, 256, 1} →
ConvLSTM{4× 4, 3× 3, 256, 1} →
ConvLSTM{4× 4, 3× 3, 256, 1}
CNNΦ

Conv{4× 4, 3× 3, 256, 1} → LReLU→
Conv{4× 4, 3× 3, 256, 1} → LReLU→
Conv{4× 4, 3× 3, 256, 1} → tanh

3 Comparison to other prediction models

In Supplementary Table 1, we compare details of the architecture and training
configurations used in various recently proposed architectures for future predic-
tion. Most notably, we produce future predictions without re-encoding predicted
images as input for the encoder network, without directly copying from the in-
put sequence, and without using GANs at any point in network training. The
gradient difference loss (GDL) is defined in [14].

We strongly encourage the reader to investigate the cited papers for more
details: this table is intended only as a road map to the very interesting and
growing literature on future prediction.

4 Ablation studies

Here, we present qualitative results from ablations of the proposed architecture
on Moving MNIST (Supplemental Figure 1) and KTH (Supplemental Figures 2
and 3). On Moving MNIST, we show the results of training the model with and
without weighted residual connections. Moving MNIST images are fairly simple,

Predicting the Future with Transformational States 21

Table 1: Comparison of sequence prediction model components and training
configurations.

Uses skip connections
or copies past?

Re-encodes images to
generate predictions
after t=T+1?

Uses LSTMs? Uses additional labels or training? Uses GANs? Loss

BeyondMSE [14]
Uses multi-scale
Laplacian pyramid on
full sequence (re-)encoding

Yes No No
GAN on
predicted images

MSE, GDL, GAN

MCNet [16]
Skips from previous
frame and difference
image re-encoding

Re-encodes images
and re-computes
difference images

ConvLSTM on
difference image
encoding

No
GAN on
predicted images

MSE, GDL, GAN

DRNet [30]
Copies content vector
from last time step

No
LSTM on input
sequence embedding

Encoder output trained to
disentangle content from pose,
content to remain static over
a sequence

GAN to
disentangle content
and pose

Two-stage training:
(1) GAN,
(2) MSE

SVG-LP [38]
Skips from last
input frame encoding

Yes
LSTM on
encoder output and
LSTM on learned prior

No No
MSE, KL divergence
between model and
learned prior

SNA [46]
Skips from previous
frame re-encoding and
from last input frame

Yes
ConvLSTM layers
throughout encoder
and decoder

Uses control state and
action as additional input

No MSE

Dual Motion GAN [20] No Yes
ConvLSTM on
encoder output

Trains network to
predict current and
future optical flow

GAN on
predicted images and
predicted current and
future flow

GAN, VAE KL
divergence

DVF [18] No Yes No No No L1, total variation losses

PredNet [22] No Yes
ConvLSTMs throughout
architectures

No No
Predictive coding
L1 loss

Adversarial
Transformer [17]

Predicted images given
as interpolation of
last input image pixels

No, last input image
directly transformed

No No
Uses conditional GAN
on predicted sequences

GAN

Ours
Masked residual from
previous decoder state

No
ConvLSTM on
encoder output

No No MSE

so residual connections do not lead to as large an improvement in performance
as on datasets with real-world image statistics.

On KTH, we compare the full model against models trained (i) with a Con-
vLSTM core instead of the full RNN core described in the main paper, (ii) using
residual connections directly from the last input time step instead of the previ-
ous time step (i.e. the decoder at time t = T + k receives skip connections from
the encoder at time t = T instead of the decoder at time t = T + k − 1), (iii)
with no skip or residual connections. The full model best captures image motion
while also leading to better background in-painting.

All models were trained with the hyperparameters used to train the model
described in the paper. On KTH, this produced good results for all models in-
cluding residual connections. We have seen qualitatively better motion on the
model without residuals using different hyperparameters, but the results shown
here are representative of the difference between models. Including residual con-
nections led to dramatically better results on background prediction, but the
model without residual connections appears to model motion reasonably well in
some cases.

22 Jaegle, Rybkin, Derpanis, and Daniilidis

Input
sequence

Ground
truth future

Estimate,
no residuals

Estimate,
w/ residuals

Images taken from
mnist-phi-g-big-1e0/ (iter 1424000) (no skips)

mnist-recursive-phi-g-big-1e0 (1474000) (skips)

Input
sequence

Ground
truth future

Estimate,
no residuals

Estimate,
w/ residuals

Fig. 1: Comparison of Moving MNIST results on architectures with and without
residual connections. The model labeled “no residuals” has no skip or residual
connections of any kind. The model labeled “w/ residuals” is the full model de-
scribed in the paper. The model without weighted residual connections produces
good predictions, but including these connections produces crisper results, es-
pecially at early prediction time steps. Both architectures reliably capture digit
identity, even after the digits overlap.

Predicting the Future with Transformational States 23

Ground
truth future

No residuals

No transformational
state

Full model

Residuals skipped
from last input image

Input
sequence

Ground
truth future

No residuals

No transformational
state

Full model

Residuals skipped
from last input image

Input
sequence

Fig. 2: Comparison of KTH results on models with architectural ablations. (i)
“No transformational state”: the RNN core omits the CNNΦ and includes only
ConvLSTM components. (ii) “Residuals skipped from last input image”: each
decoder directly receives residual input from the encoder at the last input time
step (t = T) instead of the previous decoder time step. Weighted residuals are
still used. (iii) “No residuals”: no residual or skip connections of any kind are
used. The second sequence shown here is very challenging for all models. While
not perfect, the full model produces better motion (notice the motion of the
legs) and less prominent ghosting artifacts than ablations.

24 Jaegle, Rybkin, Derpanis, and Daniilidis

Ground
truth future

No residuals

No transformational
state

Full model

Residuals skipped
from last input image

Input
sequence

Ground
truth future

No residuals

No transformational
state

Full model

Residuals skipped
from last input image

Input
sequence

Fig. 3: Additional comparisons of KTH results on models with architectural ab-
lations. See Supplemental Figure 2 caption for explanation of ablations.

	Predicting the Future with Transformational States
	Supplemental material: Predicting the Future with Transformational States

