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Abstract  
 
A strong preference for novelty emerges in infancy and is prevalent across the animal kingdom. 
When incorporated into reinforcement-based machine learning algorithms, visual novelty can 
act as an intrinsic reward signal that vastly increases the efficiency of exploration and expedites 
learning, particularly in situations where external rewards are difficult to obtain. Here we review 
parallels between recent developments in novelty-driven machine learning algorithms and our 
understanding of how visual novelty is computed and signaled in the primate brain. We propose 
that in the visual system, novelty representations are not configured with the principal goal of 
detecting novel objects, but rather with the broader goal of flexibly generalizing novelty 
information across different states in the service of driving novelty-based learning. 
 
 
Highlights  
 

• Novelty-based exploration can expedite learning when rewards are sparse 
• Novelty-based machine learning incorporates novelty into computations of value 
• In brains and machines, novelty signals are continuous and distributed 
• Effective novelty-based machine learning requires view and state invariance  
• IT cortex supports flexible view and state invariant representations of novelty 
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Introduction 
 
What signals does an animal or other agent need to learn to generate good behavior? 
Reinforcement learning (RL) provides one answer to this question: to learn to act, an agent 
needs access to a reward signal, and it needs to estimate which states and actions cause that 
signal to be large [reviewed by 1]. Typically, RL assumes that the reward signal comes in the 
form of an external reward, such as a satisfying food. RL has proven highly effective for 
describing reward-based learning in neural systems [2], and it has led to breakthroughs in 
machine learning [3,4]. However, classic implementations of RL are most effective when reward 
signals are easily and frequently obtained [1], and this is typically not the case in real 
environments. What type of signal can be used to learn in settings where rewards are rare? 
 
Curiosity in the form of novelty seeking is one candidate for such a signal [5]. Human infants 
exhibit strong preferences for stimuli and situations unlike those encountered before, even when 
rewards aren’t otherwise associated with these stimuli [6]. Analogous novelty preferences have 
been observed in over 100 species, ranging from reptiles to monkeys [7,8]. Recent work in 
machine learning demonstrates how novelty can be incorporated into RL algorithms to 
successfully drive the mastery of complex tasks. In parallel, recent developments in 
neuroscience have provided important insights into how visual novelty is computed and signaled 
in the brain. In this review, we synthesize recent work on the computation, representation, and 
uses of visual novelty in both machine learning and neuroscience. By drawing these 
connections, we hope to encourage more rapid progress in both fields. 
 
 
Visual novelty and intrinsic motivation for machine-based RL  
 
Consider a monkey foraging for fruit hidden in the dense brush of a tree, where different 
branches can be envisioned as pathways that lead to different “states” where the fruit might be 
(Fig 1). How might the monkey decide which states are valuable? When fruit is sparse, the 
monkey is unlikely to find rewards by exploring branches purely at random, as only a few states 
contain fruit, and it will typically miss these states, often revisiting fruitless parts of the tree. A 
more effective strategy is to explore branches that are different than those tried in the past. This 
can be achieved by making the act of exploring novel things itself a rewarding experience for the 
monkey, and this is precisely what novelty-driven RL algorithms seek to do.  
 
Classic RL algorithms learn what outcomes lead to what rewards by assigning values to 
different states. Novelty-based RL methods seek to incorporate the novelty of a state into its 
value by augmenting the classic equation for computing value, the Bellman equation [9], with a 
third term that reflects the state’s novelty: 
 

𝑉 𝑠 = 𝑚𝑎𝑥!∈![𝑅 𝑠, 𝑎 + 𝛾𝔼![𝑉 𝑠! ] + 𝛽𝑁(𝑠)] 
 
where 𝑉 𝑠  is the value of the current state, 𝑠. The first term of this equation, 𝑅 𝑠, 𝑎 , is an 
estimate of the reward that the agent will get by taking the most rewarding action (𝑎) from the 
set of possible actions (𝐴). The second term, 𝔼![𝑉 𝑠! ], is the anticipated value of the next 
state, 𝑠!, taking into account the expected dynamics of the environment (described by a 
transition function 𝑝(𝑠!|𝑠, 𝑎)). Here 𝛾 is a discount factor used to balance the reward from the 
current state with the expected value of future states. Together, these first two terms capture the 
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original Bellman formulation, which does not incorporate novelty considerations. The final term, 
𝑁(𝑠), was incorporated later to assign value based on the state’s novelty, where 𝛽 is a 
parameter that balances reward seeking with novelty seeking [10]. 
 
In simple environments, novelty can be computed by keeping track of all states that have been 
visited, and states are rated as more novel if they have been visited less frequently. Algorithms 
that employ such an approach are often called count-based strategies. In early proposals for 
novelty-driven RL, count-based strategies were demonstrated to lead to good exploration 
behavior in simple RL settings such as bandit problems and simple Markov decision processes 
[11-13]. 
 

 
  
Figure 1: Novelty can drive exploration in environments with sparse external rewards. An illustration of 
the benefits of exploration: a monkey is trying to find a piece of fruit (a reward) in a large, densely foliated 
tree with many branches. Typically, the monkey must make many choices and explore many “states” 
before it receives a single reward. If the monkey finds novel states rewarding, then it will be encouraged 
to explore the tree, and it can discover rewarding states that it would otherwise miss. View invariance: 
different views of the same state (e.g. the apple) can correspond to different images. To effectively drive 
RL, a system must map images onto their corresponding states. State invariance: different states can 
share features that are indicative of their novelty, e.g. reflecting the fact that fruits are usually large and 
are rarely green while leaves are often small and can take on many shades of green. A system that can 
exploit the features shared by different states can drive the monkey to explore states with novel features 
(e.g. objects with a new size or shade). 
 
 
Contemporary RL approaches typically address the problem of training an agent to produce a 
controller or motor command given the pixel pattern on a video display, in settings such as Atari 
video games [14] or navigation through complex 3D scenes (Beattie C et al., arXiv: 
1612.03801). To effectively estimate and use novelty in these settings, a system must overcome 
the high-dimensionality inherent to these problems, a challenge that can be parsed into two 
conceptually distinct invariance problems. The first is view invariance: because the same 
underlying state can be viewed from many different vantage points, a system has to sort out the 
mapping from a diversity of images on to their corresponding states to estimate the novelty of 
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the current visual input (Fig 1). However, this alone is not sufficient to explore settings with a 
large number of states, where exhaustive exploration of unique states remains intractable. 
Rather, a system must also be capable of state invariance: capturing the groupings of different 
states based on their shared characteristics, such as the fact that ripe fruits are rarely green (Fig 
1). In contemporary novelty-driven RL algorithms, state-invariant estimates of novelty are a 
crucial component of guiding exploration toward states that are most unlike those previously 
seen and efficiently finding previously undiscovered rewards. 
 
Recent novelty-driven RL methods address both invariance problems by employing some form 
of a model that transforms images into novelty estimates. Most methods train a deep neural 
network (DNN) for this goal, as DNNs have proven successful at learning invariant and 
generalizable representations in a broad range of settings (for reviews, see [15,16]). Recent 
proposals differ in terms of the details by which these models are trained and how the resulting 
measures of image similarity are converted into estimates of novelty, as described below. Once 
estimated, nearly all proposals incorporate novelty into measures of value in the same way (i.e. 
by incorporating novelty into the Bellman equation), as described above.  
 
One class of recent proposals for novelty-driven RL addressed the view and state invariance 
challenges by incorporating a method for computing similarity between images. Some of these 
proposals extend classic count-based proposals by first mapping similar images to the same bin 
(e.g. using a hash function [17] or by clustering [18]) before counting. A complementary 
proposal [19] estimated image similarity by training a DNN to estimate the distance in time 
between pairs of images, motivated by the observation that temporal continuity can capture 
invariance [20]. Instead of counting how many times states had been visited, this method 
estimated an image’s novelty by comparing it to familiar images held in a memory buffer. 
 
Another class of proposals for novelty-driven RL used “pseudocounts” to estimate novelty. In 
contrast to explicit count-based proposals, pseudocount methods address the invariance 
problems using a model (e.g. a DNN) trained to estimate the probability of images. 
Pseudocounts are computed based on how the probability of an image changes between the 
Nth and (N+1)th times it is viewed, where N is often zero (see [21] for the exact expression). 
Because these methods approximate continuous probabilities, they are well suited to scenarios 
where the dimensionality is high and hence nearly all counts are zero, but some stimuli are 
more probable than others. Because pseudocount methods are based on the response after 
repeated exposure to an image, they bare some similarity to the phenomenon of repetition 
suppression in the visual system (see below for a discussion of the role of repetition 
suppression in novelty computation in the brain). Several recent papers have achieved 
promising results using pseudocounts to drive exploration on difficult RL tasks [21-23]. 
 
How does novelty seeking relate to other types of intrinsic motivation? In the case of 
pseudocount estimates, an important theoretical link has been established between estimates of 
novelty and the amount of information gain [24] that follows from observing an image [21]. 
Intuitively, this is because the novelty of an image reflects how much it differs from what we 
expect to see based on what we’ve seen in the past. Early work on intrinsic motivation 
established the link between curiosity and measures of image informativeness, such as 
information gain [25,26]. While the information gained by observing an image cannot be 
computed directly, several methods have been proposed to approximate it to drive exploration 
[27,28]. A number of recent papers have also proposed other, related signals to drive 
exploration, including methods that estimate image informativeness by how variable or 
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unreliable the response to the image is [29], how well the response of a target model can be 
predicted [30], and by how difficult it is to predict what will follow an image in time [31-33]. Unlike 
methods for novelty-driven RL, these methods do not estimate novelty explicitly, but they share 
the goal of driving exploration by estimating the informativeness of images. 
 
In sum, machine learning algorithms that incorporate novelty as an intrinsic reward have proven 
effective at driving RL, particularly in environments where rewards are sparse. To compute 
novelty, contemporary algorithms are designed to generalize across different views of the same 
state and to share features across different states (Fig 1). These algorithms estimate the novelty 
of the current visual input using a variety of techniques, but we can broadly distinguish between 
those that employ explicit count-based methods of novelty and those that estimate novelty using 
pseudocount procedures. Direct theoretical links have been established between pseudocounts 
and the amount of information gained by viewing an image. All methods share the goal of 
driving exploration toward states that have not yet been adequately explored. In the next 
section, we focus on recent progress toward understanding where and how the neural 
correlates of these machine-based novelty signals may be computed and signaled in the 
primate brain. 
 
 
Computing and signaling novelty in the primate brain  
 
Our ability to detect visual novelty (or equivalently remember whether we have seen an image) 
is quite remarkable – for example, we can view thousands of photographs, each only once and 
each for a few seconds, and then distinguish with high accuracy the specific images that we 
have already seen from those that remain novel to us [34]. Even after viewing as many as 
10,000 distinct photographs, our rates of remembering do not saturate, suggesting that this type 
of single-exposure visual memory has an exceedingly large capacity [34,35]. The most 
remarkable aspects of our ability to detect visual novelty are thought to be mediated by our 
“familiarity” memory system. One effective illustration of familiarity is the experience that we all 
occasionally have of seeing someone and remembering that we know them but not being able 
to recall any details about them, at least for a few moments, and this “sense of remembering 
absent details” is precisely what the familiarity memory system supports. In contrast to 
recollection-based memories (e.g. of the details about that person, such as their name), which 
are thought to be largely mediated by the hippocampus, familiarity is thought to be mediated by 
another brain area in the medial temporal lobe, perirhinal cortex, as well its input from the part of 
the visual system involved in signaling object and scene information, inferotemporal cortex (IT) 
[reviewed by 36,37]. 
 
How do these brain areas signal visual novelty? Novelty is thought to be signaled in IT and 
perirhinal cortex via an adaptation-like change in firing rate in response to familiar as compared 
to novel stimuli, a phenomenon referred to as repetition suppression [38-42]. Consistent with the 
signatures needed to account for the vast capacity of human single-exposure visual memory 
behavior, firing rate reductions with familiarity are selective for images, even after viewing large 
numbers of them, and these response decrements last for several minutes to hours following 
the single viewing of an image [39,40,42]. These putative visual novelty signals are mixed with 
signals reflecting visual identity, both within the responses of individual neurons and across the 
IT population. That is, visual identities of images and their content are thought to be reflected as 
distinct patterns of spikes across the IT population, and this translates into a population 
representation in which visual information about the currently-viewed scene is reflected by a 
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population’s vector angle [Fig. 2; reviewed by 43]. In contrast, novelty is thought to be signaled 
by overall firing rates or equivalently the length of the population response vector, where vectors 
are longer for novel images and become shorter as they become familiar [42]. Novelty and 
familiarity modulations are thought to be approximately multiplicative [44,45], which translates to 
a type of novelty coding for memory that maintains identity vector angle position, thereby 
preventing the interference of identity and novelty representations [42]. Repetition suppression 
magnitudes are also continuous and depend on factors such as the time since an image has 
been viewed, the duration of the viewing, and the number of repeated viewings [reviewed by 
46]. This encoding scheme can account for behavior on a familiarity task with a decoder that 
maps IT neural response to behavior via a simple positively-weighted linear read-out [42]. 
 

 
 
Fig 2. The representation of visual novelty in IT. a) Shown are the hypothetical population responses to 
two images, each presented as both novel and familiar, plotted as the spike count response of neuron 1 
versus neuron 2. In this scenario, visual identity (e.g. image or object identity) is reflected by the 
population response pattern, or equivalently, the direction of each population response vector. In contrast, 
novelty is reflected by the population vector length, where images with longer population vectors are more 
novel, and novelty can be extracted with a simple, positively weighted decoder. b) Visual representations 
in IT (depicted here for novel images) are grouped by object identity and category similarity and formatted 
such that identity and category (e.g. leaves) can be extracted with a simple linear decoder. c) Repetition 
suppression is strongest for repeated presentations of the same image but also has partial transfer 
across images that are similar.   
 
How is novelty computed by the brain? In the framework described in Figure 2, this amounts to 
understanding the origin of IT repetition suppression. Repetition suppression is found at all 
stages of visual processing from the retina to IT, and it strengthens in its magnitude as well as 
the duration over which it lasts across the visual cortical hierarchy [47]. Consequently, a 
hierarchical cascade of feed-forward, adaptation-like mechanisms clearly contribute to IT 
repetition suppression [46]. There are also indications that IT repetition suppression may arise 
from changes in synaptic weights between recurrently connected units within IT [46,48] and/or 
feed-back mechanisms from higher brain areas (such as perirhinal cortex) [49,50], although the 
latter assertion has been the focus of some debate [reviewed by 46].  
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Insights from comparisons between brain-based and machine-based approaches to 
novelty 
 
Machine learning and neuroscience arrive at novelty considerations from complementary 
perspectives: the former solves challenging engineering problems whereas the latter discovers 
the principles by which the brain operates. Despite their different objectives, they have much to 
learn from one another. For example, insofar as the brain is a machine that can perform these 
tasks, engineering insight can be gained from an understanding of how it operates. Conversely, 
engineering considerations can provide insights into the rationale behind specific brain 
implementations. Here we highlight two insights that emerge from the comparison between 
brain-based and machine-base approaches to novelty that we find particularly striking. 
 
The signals for novelty are continuous and are multiplexed with identity information in the brain 
as well as in a subset of machine-based approaches. As described above, the brain does not 
parcellate the signaling of visual identity and visual novelty into distinct modules, but rather 
multiplexes identity and novelty representations at the highest stages of the visual system (Fig 
2a). Additionally, brain-based measures of novelty are continuous (as opposed to binary or 
discrete). There are interesting analogies between this distributed, continuous encoding scheme 
and pseudocount novelty-driven proposals, which compute continuous measures of novelty by 
comparing probabilities across repeated image exposures. As described above, this type of 
encoding scheme is highly advantageous for novelty-driven learning when the dimensionality is 
large and nearly everything is novel.  
 
The brain supports representations of visual novelty that are tolerant rather than invariant, 
thereby making them flexible for different tasks and environments. To summarize one insight 
from above, novelty-driven RL needs to estimate view and state invariant measures of similarity 
between the current visual input and previously viewed images (Fig 1). In the brain, novelty 
information (in the form of repetition suppression) is multiplexed with visual information in IT, the 
same brain area implicated in the computation of object identity “invariant” to view [reviewed by 
43]. While it is thus natural to conjecture that IT novelty representations are configured with the 
principal goal of detecting the appearance of novel objects, we suspect that this is short-sighted. 
Rather, as demonstrated above, the “states” that need to be explored to solve real-world 
learning problems (and analogously, Atari video games) are not typically defined by the objects 
contained therein, but rather by something more akin to scenes [see also 51]. There are several 
indications that IT novelty representations are configured with the broader goal of flexibly 
generalizing novelty information across different states. First, while not broadly appreciated, the 
responses of individual IT neurons are not themselves “invariant” but rather tolerant, meaning 
they remain sensitive to changes in parameters such as the position, size, and background 
context with which objects appear. Invariance emerges across the population as a consequence 
of the linearly separable format of IT representations, where object identity can be extracted with 
a simple linear decoding scheme (Fig 2b, [reviewed by 43]). Moreover, IT reflects explicit (i.e. 
linearly separable) information about scene details (such as an object’s position) to a higher 
degree than any earlier stage of the form processing pathway [52]. Second, our behavioral 
reports of novelty contain rich information about the context and configurations that objects 
appear in [35], suggesting that novelty-based computations are not object-invariant, but rather 
incorporate considerable detail about scenes. Third, while novelty representations in IT are 
generally very selective for image identity [53], after viewing an image, repetition suppression 
does in fact transfer to other, similar images ([54], Fig 2c). This includes transfer across images 
whose similarity is conferred by their shape, as well as other variables such as an object’s 
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spatial position. Taken together, these results suggest that graded IT novelty representations 
reflect information about the images that have been encountered but also support novelty 
generalization across images that are similar in virtue of either their view or state (Fig 1). We 
speculate that the representation of identity and novelty in IT (as illustrated in Fig 2a-c) supports 
adaptation to new environments by enabling downstream behavioral decoding to reflect the 
relationship of new images to those encountered in past experience. 
 
 
Conclusions 
 
The major successes in AI have largely come in settings with frequent, identifiable rewards, but 
animals live in complex environments that do not provide ubiquitous, easily identifiable rewards. 
Yet infants, and other developing animals, are able to reliably produce complex behaviors with 
only a small amount of experience. The success of novelty-based approaches in overcoming 
the limitations of current approaches to learning suggests that novelty computation may play a 
crucial role in how animals explore and learn. Signals reflecting visual novelty are found in the 
primate brain in higher visual areas such as IT, where they are reflected as continuous 
measures of novelty and multiplexed with representations of visual identity. Taken together, 
recent studies suggest that IT novelty representations can generalize novelty across different 
views and states in the manner required to drive novelty-based exploration and learning. 
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Highlighted references:  
 
* Tang H, Houthooft R, Foote D, Stooke A, Chen OX, Duan Y, Schulman J, DeTurck F, Abbeel 
P: #Exploration: A study of count-based exploration for deep reinforcement learning. In 
Conference on Neural Information Processing Systems (NeurIPS): 2017:2753-2762. 

This paper addressed the view and state invariance challenges by adapting count-based 
methods to image-based RL using hash functions that map images to a relatively small 
number of bins. 
 

** Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D, Munos R: Unifying count-
based exploration and intrinsic motivation. In Conference on Neural Information Processing 
Systems (NeurIPS): 2016:1471-1479.  

This paper introduced the notion of pseudocounts, which generalize count-based 
methods for novelty estimation and can be applied to RL problems with high-
dimensional, continuous states such as images. The authors formally demonstrated the 
relationship between pseudocounts and information gain, suggesting that pseudocounts 
may lead to near-optimal exploration behavior.  
 

* Savinov N, Raichuk A, Marinier R, Vincent D, Pollefeys M, Lillicrap T, Gelly S: Episodic 
curiosity through reachability. In International Conference on Learning Representations 
(ICLR): 2019. [19] 

This paper computed an intrinsic reward signal that closely resembles a novelty 
computation using two interesting model components: a learned similarity measure and 
a memory buffer.  
 

** Meyer T, Rust NC: Single-exposure visual memory judgments are reflected in 
inferotemporal cortex. eLife 2018, 7:e32259.  

This paper demonstrated the plausibility of IT repetition suppression as a novelty signal 
by illustrating that a positively weighted linear read-out of IT responses could account for 
remembering and forgetting behavior as a function of time since an image was viewed.   

 
* Hong H, Yamins DL, Majaj NJ, DiCarlo JJ: Explicit information for category-orthogonal 
object properties increases along the ventral stream. Nat. Neurosci. 2016, 19:613-622. 

This paper demonstrated the robust and easily accessible representations of IT 
populations for properties beyond object identity, including object position.  



 10 

References: 
 
1. Sutton RS, Barto AG: Reinforcement learning: An introduction: MIT press; 2017. 

2. Lee D, Seo H, Jung MW: Neural basis of reinforcement learning and decision making. 
Annu. Rev. Neurosci. 2012, 35:287-308. 

3. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai 
M, Bolton A: Mastering the game of Go without human knowledge. Nature 2017, 
550:354. 

4. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller 
M, Fidjeland AK, Ostrovski G: Human-level control through deep reinforcement learning. 
Nature 2015, 518:529. 

5. Gottlieb J, Oudeyer P-Y: Towards a neuroscience of active sampling and curiosity. Nat. 
Rev. Neurosci. 2018:1. 

6. Reynolds GD: Infant visual attention and object recognition. Behav. Brain Res. 2015, 
285:34-43. 

7. Glickman SE, Sroges RW: Curiosity in zoo animals. Behaviour 1966:151-188. 

8. Hall BA, Melfi V, Burns A, McGill DM, Doyle RE: Curious creatures: a multi-taxa 
investigation of responses to novelty in a zoo environment. PeerJ 2018, 6:e4454. 

9. Bellman R: The theory of dynamic programming. Bull. Amer. Math. Soc. 1954, 60:503-
515. 

10. Strehl AL, Littman ML: An analysis of model-based interval estimation for Markov 
decision processes. J. Comput. Syst. Sci. 2008, 74:1309-1331. 

11. Kolter JZ, Ng AY: Near-Bayesian exploration in polynomial time. In International 
Conference on Machine Learning (ICML): 2009:513-520. 

12. Lai TL, Robbins H: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 
1985, 6:4-22. 

13. Strehl AL, Littman ML: A theoretical analysis of model-based interval estimation. In 
International Conference on Machine Learning (ICML): 2005:856-863. 

14. Bellemare MG, Naddaf Y, Veness J, Bowling M: The arcade learning environment: An 
evaluation platform for general agents. J. Artif. Intell. Res. 2013, 47:253-279. 

15. Goodfellow I, Bengio Y, Courville A, Bengio Y: Deep learning, vol 1: MIT press Cambridge; 
2016. 

16. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 2015, 521:436. 



 11 

17. Tang H, Houthooft R, Foote D, Stooke A, Chen OX, Duan Y, Schulman J, DeTurck F, 
Abbeel P: #Exploration: A study of count-based exploration for deep reinforcement 
learning. In Conference on Neural Information Processing Systems (NeurIPS): 2017:2753-
2762. 

18. Abel D, Agarwal A, Diaz F, Krishnamurthy A, Schapire R: Exploratory gradient boosting 
for reinforcement learning in complex domains. In International Conference on Machine 
Learning (ICML) Workshop on Abstraction in Reinforcement Learning: 2016. 

19. Savinov N, Raichuk A, Marinier R, Vincent D, Pollefeys M, Lillicrap T, Gelly S: Episodic 
curiosity through reachability. In International Conference on Learning Representations 
(ICLR): 2019. 

20. Anselmi F, Leibo JZ, Rosasco L, Mutch J, Tacchetti A, Poggio T: Unsupervised learning 
of invariant representations. Theor. Comput. Sci. 2016, 633:112-121. 

21. Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D, Munos R: Unifying count-
based exploration and intrinsic motivation. In Conference on Neural Information 
Processing Systems (NeurIPS): 2016:1471-1479. 

22. Martin J, Sasikumar SN, Everitt T, Hutter M: Count-based exploration in feature space 
for reinforcement learning. In International Joint Conference on Artificial Intelligence 
(IJCAI): 2017. 

23. Ostrovski G, Bellemare MG, Oord Avd, Munos R: Count-based exploration with neural 
density models. In International Conference on Machine Learning (ICML): 2017. 

24. Cover TM, Thomas JA: Elements of information theory edn 2nd: Wiley-Interscience; 2006. 

25. Schmidhuber J: Driven by compression progress: A simple principle explains 
essential aspects of subjective beauty, novelty, surprise, interestingness, attention, 
curiosity, creativity, art, science, music, jokes. Journal of SICE 2009, 48:21-32. 

26. Singh SP, Barto AG, Chentanez N: Intrinsically motivated reinforcement learning. In 
Conference on Neural Information Processing Systems (NeurIPS): 2004:1281-1288. 

27. Houthooft R, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P: VIME: Variational 
information maximizing exploration. In Conference on Neural Information Processing 
Systems (NeurIPS): 2016:1109-1117. 

28. Mohamed S, Rezende D: Variational information maximisation for intrinsically 
motivated reinforcement learning. In Conference on Neural Information Processing 
Systems (NeurIPS): 2015:1-9. 

29. Sorg J, Singh S, Lewis RL: Variance-based rewards for approximate Bayesian 
reinforcement learning. In Conference on Uncertainty in Artificial Intelligence (UAI): 
2010:564-571. 

30. Burda Y, Edwards H, Storkey A, Klimov O: Exploration by random network distillation. In 
International Conference on Learning Representations (ICLR): 2019a. 



 12 

31. Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA: Large-scale study of 
curiosity-driven learning. In International Conference on Learning Representations (ICLR): 
2019b. 

32. Haber N, Mrowca D, Wang S, Fei-Fei L, Yamins DL: Learning to play with intrinsically-
motivated self-aware agents. In Conference on Neural Information Processing Systems 
(NeurIPS): 2018. 

33. Pathak D, Agrawal P, Efros AA, Darrell T: Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (ICML): 2017. 

34. Standing L: Learning 10,000 pictures. Q. J. Exp. Psychol. 1973, 25:207-222. 

35. Brady TF, Konkle T, Alvarez GA, Oliva A: Visual long-term memory has a massive 
storage capacity for object details. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14325-14329. 

36. Bogacz R, Brown MW: Comparison of computational models of familiarity 
discrimination in the perirhinal cortex. Hippocampus 2003, 13:494-524. 

37. Brown MW, Banks PJ: In search of a recognition memory engram. Neurosci. Biobehav. 
Rev. 2015, 50:12-28. 

38. Fahy FL, Riches IP, Brown MW: Neuronal activity related to visual recognition memory: 
long-term memory and the encoding of recency and familiarity information in the 
primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 1993, 
96:457-472. 

39. Li L, Miller EK, Desimone R: The representation of stimulus familiarity in anterior 
inferior temporal cortex. J. Neurophysiol. 1993, 69:1918-1929. 

40. Xiang JZ, Brown MW: Differential neuronal encoding of novelty, familiarity and 
recency in regions of the anterior temporal lobe. Neuropharmacology 1998, 37:657-676. 

41. Desimone R: Neural mechanisms for visual memory and their role in attention. Proc. 
Natl. Acad. Sci. U.S.A. 1996, 93:13494-13499. 

42. Meyer T, Rust NC: Single-exposure visual memory judgments are reflected in 
inferotemporal cortex. eLife 2018, 7:e32259. 

43. DiCarlo JJ, Zoccolan D, Rust NC: How does the brain solve visual object recognition? 
Neuron 2012, 73:415-434. 

44. Grill-Spector K, Henson R, Martin A: Repetition and the brain: neural models of 
stimulus-specific effects. Trends Cogn. Sci. 2006, 10:14-23. 

45. McMahon DB, Olson CR: Repetition suppression in monkey inferotemporal cortex: 
relation to behavioral priming. J. Neurophysiol. 2007, 97:3532-3543. 

46. Vogels R: Sources of adaptation of inferior temporal cortical responses. Cortex 2016, 
80:185-195. 



 13 

47. Zhou J, Benson NC, Kay KN, Winawer J: Compressive temporal summation in human 
visual cortex. J. Neurosci. 2018, 38:691-709. 

48. Lim S, McKee JL, Woloszyn L, Amit Y, Freedman DJ, Sheinberg DL, Brunel N: Inferring 
learning rules from distributions of firing rates in cortical neurons. Nat. Neurosci. 2015, 
18:1804-1810. 

49. Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T: Neural repetition 
suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 2008, 11:1004-
1006. 

50. Grotheer M, Kovacs G: Repetition probability effects depend on prior experiences. J. 
Neurosci. 2014, 34:6640-6646. 

51. Yildirim I, Siegel M, Tenenbaum JB: Physical object representations for perception and 
cognition. In The Cognitive Neurosciences, 6th edition. Edited by Gazzaniga M, Poeppel 
MIT press; In press.  

52. Hong H, Yamins DL, Majaj NJ, DiCarlo JJ: Explicit information for category-orthogonal 
object properties increases along the ventral stream. Nat. Neurosci. 2016, 19:613-622. 

53. Sawamura H, Orban GA, Vogels R: Selectivity of neuronal adaptation does not match 
response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 
2006, 49:307-318. 

54. De Baene W, Vogels R: Effects of adaptation on the stimulus selectivity of macaque 
inferior temporal spiking activity and local field potentials. Cereb. Cortex 2010, 
20:2145-2165. 

 


