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ABSTRACT
We describe a framework for decentralised cooperative multi-agent

reinforcement learning that encompasses existing approaches based

on asymmetric updates, as well as methods based on distributional

reinforcement learning. Both of these strategies can be interpreted

as augmenting single-agent learning algorithms with optimism;

the former at the level of temporal difference (TD) errors, and the

latter at the level of returns. This perspective allows for the detailed

examination of fundamental differences between these two families

of methods across a range of environments, and we identify several

environment properties that exemplify the differences in perfor-

mance that may arise in practice. Further, the unifying framework

used to describe these algorithms highlights many possible variants

of these basic approaches, and we introduce several new families of

algorithms that can be seen as interpolating between TD-optimism

and return-optimism.

KEYWORDS
Reinforcement learning, distributional reinforcement learning, op-

timism, game theory, multi-agent learning

1 INTRODUCTION
A key aim of artificial intelligence is to build agents that can coop-

erate or compete with one another effectively while acting inde-

pendently, in spite of incomplete information and a dynamically-

changing environment. This is the problem addressed by decen-

tralised multi-agent reinforcement learning (MARL), where agents

must learn when credit for an outcome is due to their own actions,

rather than the actions of other agents or uncontrollable dynamics

in the environment [2, 9, 17, 52]. A simple and well-investigated

mechanism for solving this problem in cooperative environments

is to learn optimistically, effectively operating under the assump-

tion that other agents will themselves eventually learn to perform

optimally. Under certain conditions, optimistic agents learn more

accurate estimates of the value of their actions than risk-neutral

(non-optimistic) counterparts [36, 37], suggesting that optimism

may be a key part of the solution to this problem.

Many approaches to optimistic learning are based on single-

agent algorithms such as Q-learning [53]. Optimism can be imple-

mented at the level of temporal difference (TD) errors by modifying

the Q-learning rule to put less weight on negative TD errors; this

approach is taken by distributed Q-learning [22], lenient Q-learning

[6, 35, 36], and hysteretic Q-learning [26, HQL], which are effective

in a range of cooperative tasks and have been successfully scaled

up in combination with deep learning to large-scale environments

[32–34, 54]. However, when the domain itself is stochastic, these

modified Q-learning rules can induce misplaced optimism towards

uncontrollable environment dynamics, leading to sub-optimal be-

haviour.

In parallel, there has been a recent surge of interest in distri-
butional approaches to single-agent reinforcement learning (RL),

in which agents learn to predict not only expected returns, but

further properties of the full distribution of returns [3, 28]. These

approaches have led to state-of-the-art performance in several large-

scale domains [14, 19, 31, 55]. However, most distributional RL algo-

rithms do not explicitly use the learned distribution when choosing

actions but instead simply choose the action that will maximise the

expected return. Recently, distributional RL has also been applied

to multi-agent learning [13, 20, 24]. In contrast to the TD-optimistic

approaches described above, these methods can be understood as

introducing optimism at the level of returns, as they act according

to risk-sensitive summaries of the return distribution, unlike the

risk-neutral mean value in standard RL.

In this paper, we investigate the fundamental differences between

these TD-optimistic and return-optimistic approaches in multi-

agent learning. More precisely, our key contributions are as follows:

• We prove equivalence of existing TD-optimistic multi-agent algo-

rithms and distributional RL approaches in stateless environments.
• We then show this equivalence breaks down for environments

with state, and that more generally, existing approaches such

as HQL can be interpreted as inducing optimism at the level of

temporal difference errors, whereas distributional RL methods

naturally induce optimism at the level of the return.

• We investigate several environment features that exemplify the

differences between these two approaches. One such example

is environments with unequal episode lengths. TD-optimistic

approaches such as HQL are prone to miscalibrated optimism in

such environments.

• Based on considerations such as those above, we propose new

families of algorithms for decentralised cooperative multi-agent

learning, which interpolate between TD-optimism and return-

optimism.

• Finally, we take a broader view, and sketch out several further

directions for developing our understanding of TD-optimistic

and return-optimistic approaches to multi-agent learning.



2 BACKGROUND
We begin by recalling particular notions from multi-agent value-

based RL and distributional single-agent RL, at the required level

of detail for this paper; for more detailed accounts of these two

topics, see Bloembergen et al. [7], Busoniu et al. [9], Hernandez-

Leal et al. [18], Littman [23], Matignon et al. [27], Panait and Luke

[35], Tuyls and Weiss [52] and Bellemare et al. [3], Rowland et al.

[42], respectively.

2.1 Multi-agent Markov decision processes
Markov decision processes (MDPs) are common models for agent-

environment interactions in reinforcement learning. A Markov

decision process (X,A, 𝑃,R, 𝛾) is specified by a finite state space

X, finite action space A, transition kernel 𝑃 : X × A → P (X),
reward distributions R : X × A → P (R), and discount factor

𝛾 ∈ [0, 1].
In this paper, we use multi-agent Markov decision processes

[8, MMDP] as a model for cooperative multi-agent interactions. A

MMDP is specified by a standard MDP (X,A, 𝑃,R, 𝛾) whose action
set has additional structure, taking the form A = A1 × · · · × A𝑁 ,
for some integer 𝑁 ∈ N and finite sets (A𝑛)𝑁𝑛=1. The interpretation
is that agents labeled 1 through 𝑁 interact in this MMDP, at each

timestep having access to the state 𝑥 ∈ X, each selecting an action

𝑎𝑛 ∈ A𝑛 (𝑛 = 1, . . . , 𝑁 ), and all receiving the common reward from

the MDP. Thus, the agents interact jointly with the environment

to produce trajectories (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )𝑡 ≥0 of states, joints actions, and
rewards, and the agents’ goals are perfectly aligned to maximise

the return

∑
𝑡 ≥0 𝛾

𝑡𝑟𝑡 .

2.2 Optimistic decentralised learning in
MMDPs

An optimal joint policy could be learned in a centralised manner

by treating the problem as a single-agent MDP on the action space

A =
∏𝑁
𝑛=1A𝑛 , although this scales exponentially in size with

respect to the number of agents. Moreover, this requires that there is

either a centralized learning system, or that all agents communicate

their actions with each other at each timestep. To alleviate these

issues, one can consider independent, or decentralised, learning, a
paradigm in which agents learn without directly observing the

actions of other agents.

In the decentralised multi-agent setting, a natural idea is to

have each agent implement a single-agent RL algorithm, such as

Q-learning. However, the environment is effectively non-stationary

from the point of view of an individual agent, meaning that agents

learning in such a manner are not guaranteed to reach an jointly op-

timal policy, and empirical performance can be quite poor. However,

single-agent algorithms can be modified to learn in an optimistic
manner, which often leads to theoretical and empirical improve-

ments in performance.

One of the first algorithms in this area with theoretical guar-

antees is distributed Q-learning [22], an optimistic variant of Q-

learning in which the agents are initialised with pessimistic Q-

functions, and only update in response to positive temporal differ-

ence errors. Agents using distributed Q-learning are guaranteed

to jointly play the optimal policy eventually in all deterministic
MMDPs.

Much empirical progress has been made in adapting the ba-

sic approach of distributed Q-learning to stochastic MMDPs, with

prominent examples including lenient Q-learning [36–38] and hys-

teretic Q-learning (HQL) [26]. HQL modifies standard Q-learning

as shown in Algorithm 1; the parameters 𝛼 > 𝛽 > 0 are typically

viewed as learning rate parameters, but here we equivalently view

them as part of the loss. In the control case, the action 𝑎′ is se-
lected greedily with respect to the current 𝑄-function estimate,

i.e. 𝑎′ = argmax𝑎̃ 𝑄 (𝑥 ′, 𝑎). HQL weights positive TD errors more

heavily than negative TD errors, and can therefore be understood

as interpolating between distributed Q-learning and standard Q-

learning.

Algorithm 1 Hysteretic learning update.

1: Observe transition (𝑥, 𝑎, 𝑟, 𝑥 ′, 𝑎′)
2: if 𝑥 ′ is terminal then
3: Compute Δ = 𝑟 −𝑄 (𝑥, 𝑎)
4: else
5: Compute Δ = 𝑟 + 𝛾𝑄 (𝑥 ′, 𝑎′) −𝑄 (𝑥, 𝑎)
6: Update 𝑄 (𝑥, 𝑎) by taking gradient of loss

Δ2 [𝛼1Δ>0 + 𝛽1Δ<0]

2.3 Distributional reinforcement learning
In standard (single-agent) reinforcement learning, an agent’s typical

goals are either to (i) compute expected returns

𝑄𝜋 (𝑥, 𝑎) = E𝜋

[ ∞∑
𝑡=0

𝛾𝑡𝑟𝑡

����� 𝑋0 = 𝑥,𝐴0 = 𝑎

]
, (1)

conditional on each initial state-action pair (𝑥, 𝑎) ∈ X × A, given

a policy 𝜋 : X →P (A) (the evaluation problem); or (ii) compute

the optimal policy 𝜋∗ : X →P (A) and associated value function

as in Equation (1), referred to as the control problem.

Value-based algorithms typically recursively estimate these quan-

tities using approaches based on (approximate) dynamic program-

ming [4, 5, 40, 50, 51]. Notably, these approaches focus on estimation

of the expected value of the random variable

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 |𝑋0 = 𝑥,𝐴0 =

𝑎, as in Equation (1).

By contrast, distributional approaches to RL aim to learn more

information about this random variable than just its mean. These

ideas can be traced back far into the RL literature [28, 29, 44] and

have recently enjoyed a surge in interest due to the effectiveness

of these methods in deep RL algorithms [3, 14, 15, 31, 55]. Recent

approaches have focused on learning particular properties of the

distributions such as cumulative probabilities [3], quantiles [15],

and expectiles [42], and using certain distributional versions of

dynamic programming to compute these values [3, 41, 42].

As a special case of interest in this paper, we now provide a

more detailed overview of expectile-based distributional RL. Given

𝜏 ∈ [0, 1], the 𝜏-expectile 𝑒𝜇 (𝜏) of a scalar distribution 𝜇 ∈ P (R)
(with finite second moment) is defined

argmin

𝑦∈R
E𝑍∼𝜇

[
(𝑍 − 𝑦)2 [𝜏1𝑍>𝑦 + (1 − 𝜏)1𝑍<𝑦]

]
. (2)



Algorithm 2 Expectile distributional learning update.

1: Observe transition (𝑥, 𝑎, 𝑟, 𝑥 ′, 𝑎′)
2: for 𝑘 = 1, . . . , 𝐾 do
3: if 𝑥 ′ is terminal then
4: Compute Δ𝑘,ℓ = 𝑟 −𝑄 (𝑥, 𝑎;𝜏𝑘 ) ∀ℓ
5: else
6:

1

𝐾

∑𝐾
ℓ=1 𝛿𝑧ℓ ← Impute(𝑄 (𝑥 ′, 𝑎′;𝜏1:𝐾 ))

7: Compute Δ𝑘,ℓ = 𝑟 + 𝛾𝑧ℓ −𝑄 (𝑥, 𝑎;𝜏𝑘 ) ∀𝑘
8: Update 𝑄 (𝑥, 𝑎;𝜏𝑘 ) by taking gradient of loss

1

𝐾

∑𝐾
ℓ=1 Δ

2

𝑘,ℓ

[
𝜏𝑘1Δ𝑘,ℓ>0 + (1 − 𝜏𝑘 )1Δ𝑘,ℓ<0

]
Expectiles [30] are a key form of risk measurement in economet-

rics [56] and can be interpreted as non-risk-neutral generalisations

of the mean of a distribution (the 1/2-expectile is precisely the mean).

Any value of 𝜏 greater (resp., less than) 1/2 yields an expectile re-

flecting a greater degree of optimism (resp., pessimism) about the

distribution in question. Expectiles also have close parallels with

quantiles, which are also parametrised by 𝜏 ∈ [0, 1] and defined

analogously to Equation (2), using an absolute value loss in place

of the squared loss over 𝑍 − 𝑦.
A dynamic programming algorithm, expectile distributional re-

inforcement learning (EDRL), which aims to learn the expectiles of

the return distributions in an MDP for a prespecified collection of

expectile parameters 𝜏1, . . . , 𝜏𝐾 ∈ [0, 1], is presented in Algorithm 2

[42]. In this algorithm and the others that follow, the action 𝑎′ that
appears in the transition (𝑥, 𝑎, 𝑟, 𝑥 ′, 𝑎′) may be obtained according

to some greedy procedure with respect to the current Q-function

𝑄 (as in Q-learning), or by sampling according to some fixed policy

𝑎′ ∼ 𝜋 (·|𝑥 ′) (as in policy evaluation); both cases are covered by

stating the algorithm in this way. The Impute subroutine called in

Algorithm 2 takes in a collection of expectile values, and outputs a

distribution that has those expectiles. This is an under-determined

problem, and so can in principle be implemented in different ways,

as described in Rowland et al. [42].

2.4 Applying distributional reinforcement
learning to multi-agent problems

The two previous sections have addressed separate learning prob-

lems: decentralised cooperative multi-agent learning in MMDPs,

and distributional reinforcement learning in single-agent MDPs.

Several recent works have applied distributional reinforcement

learning to MMDPs, either swapping or augmenting learning rules

such as hysteretic Q-learning with techniques from distributional

RL [13, 20, 24]. These papers have produced performance gains

by using distributional approaches in a variety of empirical set-

tings. The basic application of distributional RL to decentralised

cooperative multi-agent learning has each agent implementing a

single-agent distributional RL algorithm, and selecting actions ac-

cording to some optimistic summary of the distribution, such as a

quantile.

Our goal in this paper is to develop an understanding of the fun-

damental similarities and differences between multi-agent learning

algorithms such as hysteretic Q-learning, and distributional ap-

proaches.

3 DISTRIBUTIONAL REINFORCEMENT
LEARNING IN COOPERATIVE
MULTI-AGENT ENVIRONMENTS

With preliminaries and background established in Section 2, we

are ready to establish theoretical connections between existing

optimistic approaches to multi-agent valued-based learning, and

distributional RL.

3.1 Stateless environments
Our first result highlights the similarities between distributional

and hysterestic approaches to decentralised multi-agent learning.

The result concerns stateless environments; MMDPs in which there

is only one state, and all episodes finish after a single time-step.

These are also referred to as matrix games in the game theory

literature.

Proposition 3.1 (Equivalence of hysteretic learning andEDRL
in stateless environments.) Consider an environmentwith a sin-

gle state that terminates immediately. Then the hysteretic update

rule with parameters (𝛼, 𝛽) is equivalent (up to a change in learning
rate) to the expectile distributional update for a single expectile

with parameter 𝜏 = 𝛼/(𝛼 + 𝛽).

Proof. In stateless environments, learner 𝑛 maintain a Q-value

𝑄 (𝑎) for each action 𝑎 ∈ A𝑛 . An observation consists of an action

𝑎 taken by a player, and a corresponding observed reward 𝑟 . In this

case, the HQL loss reduces to

(𝑟 −𝑄 (𝑎))2
[
𝛼1𝑟>𝑄 (𝑎) + 𝛽1𝑟<𝑄 (𝑎)

]
, (3)

since there is no next state to bootstrap from. Now consider the

associated EDRL loss corresponding to the expectile level 𝜏 ∈ (0, 1).
The EDRL loss reduces to

(𝑟 −𝑄 (𝑎))2
[
𝜏1𝑟>𝑄 (𝑎) + (1 − 𝜏)1𝑟<𝑄 (𝑎)

]
. (4)

Now observe that if 𝜏 = 𝛼/(𝛼 + 𝛽), then Equation (4) is equal to

Equation (3) multiplied by the constant (𝛼 + 𝛽)−1, as required. □

There are several important consequences to this simple result.

First, the result makes clear the type of optimism that HQL in-

duces over each TD error; it is precisely an expectile of the reward

distribution, dictated by the choice of 𝛼 and 𝛽 .

Additionally, there is nothing particular about using expectiles as

a means of optimistic value summary. Distributional RL has made

use of a variety of other distribution summaries such as quantiles,

and this result is suggestive of a wider space of TD-optimistic

algorithms making use of other distribution summaries. This is an

early indicator of the general framework of optimistic algorithms

developed in this paper; moving to consider the general case of

MMDPs with state opens this space of possible algorithms up even

further.

3.2 Environments with state
Despite the equivalence established between EDRL and hysteretic

learning in the stateless case, the central observation made in this

paper establishes the contrary in stateful environments.
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High-return
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Low-return
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Figure 1: Schematic illustration of the differences between TD-optimistic and return-optimistic learning algorithms. (a) A
schematic illustration of the game tree for a particular environment. Trajectories begin at the root node at the top, and even-
tually reach an absorbing leaf node at the bottom of the diagram. Trajectories are ordered so that the right-most trajectories
are the highest rewarding. (b) A risk-neutral approach to estimating the value of an action at the root node considers all pos-
sible trajectories in accordance with their probability of arising, as indicated by the constant shading of the diagram. (c) A
return-optimistic summary of value gives more weight to high-return trajectories, as indicated by the shading more heavily
on the right-hand side of the diagram. (d) A TD-optimistic summary of value compounds optimistic estimates of the outcome
of each step of a trajectory, as indicated by the stacked triangles on the right-hand side of the plot.

Key Observation

HQL and EDRL are non-equivalent in stateful environ-

ments, and can therefore learn distinct values and poli-

cies. This difference is due to the fact that HQL induces

optimism at the level of TD errors, whilst EDRL induces

optimism at the level of returns.

This key distinction between HQL and EDRL in stateful environ-

ments is in fact a special case of a more general difference between

algorithms that are optimistic at the level of TD errors, and al-

gorithms that are optimistic at the level of returns. We provide

a schematic illustration of this difference in Figure 1, to provide

additional intuition as to how value estimates are affected by these

two types of optimism.

The simple analysis above of the similarities and differences of

EDRL and HQL in stateless and stateful cases has identified two

axes of variation for optimistic algorithms: (i) the optimism target,
the quantity in the learning process that is subject to optimism, and

(ii) the optimism type, the type of optimistic summary the learning

algorithm uses over this quantity. These axes are illustrated in

Figure 2; as described in the caption, this table already reveals

several algorithmic approaches that to our knowledge have not

yet been explored, and can also be extended both vertically and

horizontally to reveal yet more unexplored approaches, as described

in later sections.

4 DIFFERENCES BETWEEN TD-OPTIMISM
AND RETURN-OPTIMISM

In the previous section, we established that HQL and EDRL, and

more broadly TD-optimistic and return-optimistic methods, induce

optimism by manipulating different underlying quantities. We now

identify several characteristics of environments under which these

two algorithmic approaches lead to different outcomes and conduct

Figure 2: Two axes of variation for decentralised multi-
agent RL algorithms based on optimism: (i) Optimism tar-
get: ‘What quantity is the algorithm optimistic about?’; (ii)
Optimism type: ‘What type of optimism is used over the se-
lected target?’. Proposition 3.1 shows that in stateless cases,
TD errors and returns are equivalent, and so the ‘TD errors’
and ‘returns’ rows coincide. QDRL refers to quantile distri-
butional reinforcement learning [15]. Blank cells indicate
approaches which to our knowledge have not yet been in-
vestigated. There are many other types of optimism that
could be considered, such as the use of higher moments or
conditional-value-at-risk, which would correspond to addi-
tional columns in this table, leading to further approaches
to explore. In Section 5, we describe several methods that
extend this table vertically as well, introducing algorithms
that interpolate between TD- and return-optimism, includ-
ing HQL(𝜆), which induces optimism at the level of TD(𝜆)
errors, as indicated above.

a preliminary analysis of the learnt behaviours in instances of these

environments.



Figure 3: The environment used in the experiments in Sec-
tion 4.1. Blue circles indicate states of the environment,
whilst grey squares indicate terminal rewards.
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Figure 4: HQL (left) and EDRL (right) differences in left
and right action values at the root node of the game tree
in Figure 3. Blue corresponds to the learnt value for left
being greater than that of right, which is the correct order-
ing, whilst red corresponds to the opposite ordering. HQL
prefers the sub-optimal action, particularly in the presence
of high exploration noise, whereas EDRL always identifies
the correct optimal action.

In single-agent reinforcement learning, exploration affects only

the rate of convergence to the optimal policy, but in multi-agent

settings, exploration also affects which policies agents converge

to. In light of this, the performance of TD-optimistic and return-

optimistic approaches depend on the exploration strategy used,

and we therefore study the performance of these algorithms under

a variety of exploration noise and optimism parameter values. In

order to avoid introducing additional hyperparameters such as

learning rates that are required in sample-based algorithms, we

focus on operator-based implementations of TD-optimistic and

return-optimistic algorithms in the experiments that follow, using

dynamic programming. Specifically, the operator version of HQL

updates values to the minimiser of expected loss in Algorithm 1,

and the operator version of EDRL computes an exact distributional
Bellman operator update, using expectiles to define the greedy

policy.

4.1 Compounding optimism and
variable-length trajectories

Recalling Figure 1, TD-optimistic methods such as HQL induce

optimism in value estimates at every temporal difference error. We
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Figure 5: Whether or not a joint optimal policy is learnt un-
der HQL (left) and EDRL (right) for both agents in the game
illustrated in Figure 3. Blue indicates that a joint optimal
policy is learnt, whilst white indicates that it is not.

therefore hypothesise that for environments in which trajectories

of different lengths are possible, TD-optimistic methods may end

up preferring actions that yield longer trajectories. This is because

longer trajectories include more temporal differences (and hence

more total optimism) than shorter trajectories. We refer to this

phenomenon as compounding optimism.

As a preliminary test of this hypothesis, we consider a simple

environment in which one agent selects either the left or right
action. Under the left action, a second agent selects which of

the rewards −1,−1/3, 1/3, 1 the two agents will receive. Under the

right action, a cost of 𝛿 = 0.01 is paid, and the second agent then

makes two decisions that lead to one of the rewards −1,−1/3, 1/3, 1
again; see Figure 3. We use the discount factor 𝛾 = 1; given the

-0.01 cost, the optimal choice for the first agent is to take the left
action.

We consider the case where the second agent’s policy is fixed

at an 𝜀-greedy version of its optimal policy, and in Figure 4, we

summarise the first agent’s learnt action values at the root node.

Specifically, we plot the value of the right action subtracted from

that of the left action, for both HQL and EDRL. We vary both the

exploration noise and the optimism parameter of the learning agent.

Whilst EDRL agents identify the correct optimal action under all

parameter combinations, many HQL agents prefer the suboptimal

action, particularly in the presence of high levels of exploration

noise. In other words, the deeper game tree that corresponds to

the right action leads to compounded optimism in TD-optimistic

approaches but not in return-optimistic approaches.

We also verify under which conditions a joint optimal policy is

obtained when both agents simultaneously update their value esti-

mates. Results are displayed in Figure 5; two learners using return-

optimistic approaches learn an optimal policy in all tested settings

of exploration and optimism, whilst the TD-optimistic learners do

not learn the optimal policy in the presence of reasonably large

exploration noise.

4.2 Repeated states
In contrast to the previous example, manyMMDPs have a transition

structure that permits a state to be visited multiple times in a single

trajectory. There are also qualitative differences in the ways that

TD-optimistic and return-optimistic methods learn in these settings.
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Figure 6: Whether or not a joint optimal policy is learnt un-
der HQL (left) and EDRL (right) for both agents in the re-
peated climbing game. Blue indicates that a joint optimal
policy is learnt, whilst white indicates that it is not.

The return may reflect randomness in other agents’ actions at a

given state several times in the same trajectory, and each instance

is treated as a separate source of randomness. We might therefore

also expect different behaviour from TD-optimistic and return-

optimistic approaches in environments in which repeated states

are common.

To explore this intuition, we consider a repeated version of the

partially-stochastic variant [27] of the climbing game, originally
introduced by Claus and Boutilier [12]. In our environment, there

is a single state which repeatedly transitions back to itself, with

the reward at each timestep being specified by the payoffs of the

climbing game. Computing the exact distributional Bellman up-

date is impractical in this setting, since the environment has an

infinite horizon, so we use a 100-quantile approximation [15]. Fur-

ther, we use a discount factor of 𝛾 = 0.8. Convergence results for

HQL and EDRL are presented in Figure 6, with initialisation at the

optimal policy, to test the stability of this equilibrium; overall, the

return-optimistic approach is more sensitive to the optimism pa-

rameter. In contrast to the case of variable-length trajectories, this

suggests that TD-optimistic approaches may be preferable relative

to return-optimistic methods in environments in which states are

often encountered multiple times within the same trajectory.

5 NEW ALGORITHMS FOR DECENTRALISED
COOPERATIVE MULTI-AGENT LEARNING

Our earlier discussions make clear that hysteretic approaches to

decentralised cooperative multi-agent learning induce optimism

over TD errors, whilst distributional approaches induce optimism

over the return, and further that these approaches can lead to

different learning outcomes. A natural question to ask is whether

it is possible to induce optimism elsewhere in the agent’s update.

Here, we propose two new families of approaches that interpolate

between TD-optimism and return-optimism; these methods can be

viewed as further extending Figure 2.

5.1 Multi-step hysteretic learning
A simple way to prevent optimism from compounding across many

timesteps is to effectively increase the bootstrapping horizon of

Algorithm 3 HQL(𝜆)

1: Observe trajectory (𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 )∞𝑡=0
2: Compute

Δ =(𝑟0 + 𝛾 max

𝑎′∈A
𝑄 (𝑥1, 𝑎′) −𝑄 (𝑥0, 𝑎0))+

∞∑
𝑡=1

(𝛾𝜆)𝑡 (𝑟𝑡 + 𝛾 max

𝑎′∈A
𝑄 (𝑥𝑡+1, 𝑎′) − max

𝑎′∈A
𝑄 (𝑥𝑡 , 𝑎′))

3: Update 𝑄 (𝑥0, 𝑎0) by taking gradient of loss

Δ2 [𝛼1Δ>0 + 𝛽1Δ<0]

the learning algorithm. A straightforward modification to TD-

optimistic approaches to achieve this is to use 𝑛-step, rather than

one-step, temporal differences. For example, a 2-step version of

HQL is actually equivalent to a return-optimistic approach in the

environment considered in Section 4.1. More generally, a 𝑛-step TD-

optimistic approach is equivalent to a return-optimistic approach

in any environment with episodes of length at most 𝑛, and using

different 𝑛-step returns offers a spectrum of trade-offs between

TD-optimism and return-optimism. Recently, 𝑛-step returns have

been considered empirically in a MARL setting by [16].

A distinct trade-off can be made using 𝜆-returns [48–50], yield-

ing the HQL(𝜆) method as described in Algorithm 3, which can

be interpreted as a risk-sensitive variant of Peng’s Q(𝜆) [39]. A

schematic illustration of multistep TD-optimistic methods is given

in Figure 7, in analogy with Figure 1. With respect to Figure 2, these

multi-step method can be thought of as introducing additional rows,

specifying optimism targets distinct from returns and single-step

TD errors.

The performance of this algorithm on the environment from

Section 4.1 is illustrated in Figure 8; as expected, its performance

interpolates between TD-optimistic and return-optimitic methods.

5.2 Single-step distributional learning
The unequal optimism that TD-optimism induces in trajectories of

differing lengths can be seen to arise from the form of the temporal

difference error itself. TD-optimistic algorithms bootstrap from

an already-optimistic estimate of value at the next state, and then

apply an optimistic loss to the resulting temporal difference error.

In contrast to multi-step learning, a different approach to inter-

polating between TD-optimism and return-optimism is to modify

approaches like HQL to bootstrap from a risk-neutral value esti-

mate, thereby preventing the accumulation of optimism through

multiple back-ups. This idea leads to the approach shown in Al-

gorithm 4, which learns two estimates of value: (i) a risk-neutral

estimate 𝑄 , and (ii) an optimistic estimate 𝑄𝑜 .

Since the loss for 𝑄𝑜 bootstraps from 𝑄 , which is a risk-neutral

value estimate, 𝑄𝑜 is optimistic only about the immediate reward

and transition that occur. This prevents the accumulation of opti-

mism across many timesteps, as was the case with HQL, and for this

reason, we term this algorithm neutral-bootstrap HQL (NB-HQL).

This new algorithm can be reconciled with Figure 2 through the

addition of an extra axis of variation: whether or not the boot-

strap quantity is an optimistic summary of value. We present the

performance of this new algorithm for the environment described



Algorithm 4 Neutral-bootstrap HQL.

1: Observe transition (𝑥, 𝑎, 𝑟, 𝑥 ′, 𝑎′)
2: if 𝑥 ′ is terminal then
3: Compute Δ = Δ𝑜 = 𝑟 −𝑄 (𝑥, 𝑎)
4: else
5: Compute Δ = 𝑟 + 𝛾𝑄 (𝑥 ′, 𝑎′) −𝑄 (𝑥, 𝑎)
6: Compute Δ𝑜 = 𝑟 + 𝛾𝑄 (𝑥 ′, 𝑎′) −𝑄𝑜 (𝑥, 𝑎)
7: Update 𝑄 (𝑥, 𝑎) by taking gradient of loss Δ2

8: Update 𝑄𝑜 (𝑥, 𝑎) by taking gradient of loss

Δ2

𝑜

[
𝛼1Δ𝑜>0 + 𝛽1Δ𝑜<0

]

Low-return
trajectories

High-return
trajectories

(a) Multistep TD-optimistic

Low-return
trajectories

High-return
trajectories

(b) TD-optimistic with neutral
bootstrap

Figure 7: Schematic illustration of (a) multistep TD-
optimistic and (b) neutral-bootstrap TD-optimistic learning
algorithms, following the same conventions as Figure 2.
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Figure 8: HQL(𝜆) with 𝜆 = 0.5 (left) and NB-HQL (right) dif-
ferences in left and right action values at the root node of
the game tree in Figure 3.

in Section 4.1, in Figure 8. The single-step optimism corrects the

miscalibrated optimism that was present in HQL.

We can interpret this new method as a distributional RL algo-

rithm; replacing the imputation step of the EDRL update (Line 6 of

Algorithm 2) by setting each sample 𝑧𝑘 = 𝑄 (𝑥 ′, 𝑎′; 1/2), we obtain
a version of Algorithm 4 that learns several levels of optimism

about the immediate reward and transition simultaneously. The

idea of using techniques from distributional RL to learn about the

distribution of partial segments of the return has recently been

proposed in the context of risk-neutral single-agent reinforcement

learning [1].

6 DISCUSSION AND CONCLUSION
In this paper, we have highlighted the differences between well-

established approaches to decentralised cooperative multi-agent

learning, which use optimism over temporal difference errors as a

means to encourage cooperation, and approaches based on distri-

butional reinforcement learning, which use optimism over returns.

This has led to improved understanding as to how these algo-

rithms perform, and which characteristics of environments tend to

amplify the differences between these two families of approaches.

The tendency of TD-optimistic approaches tomiscalibrate optimism

in environments with varying episode lengths led us to propose

several new families of learning algorithms that can be interpreted

as interpolating between TD-optimism and return-optimism.

There are many natural avenues for future work in develop-

ing our understanding of this aspect of multi-agent learning. First,

Table 2 makes clear that there are many unexplored possibilities,

within both TD-optimistic and return-optimistic families of algo-

rithms, to develop new hysteretic algorithms based on quantiles or

other optimistic distribution summaries such as conditional-value-

at-risk. Similarly, while we have focused on hysteretic Q-learning

as an exemplar TD-optimistic approach, our analysis can also be

applied to other approaches such as lenient Q-learning [36]. There

is also clearly scope for investigating the combination of these

algorithms with deep learning architectures in large-scale environ-

ments, with scheduled variation in exploration rates and optimism

levels throughout training.

In addition to new algorithms within the TD-optimistic and

return-optimistic families, another natural source of future work is

further investigation of the newly-introduced families of methods

that interpolate between TD-optimism and return-optimism, as

well as extending Figure 2 along the vertical axis, for example

by considering CVaR-based optimism [10, 11, 21, 43]. There are

also many other approaches to cooperative MARL not studied in

this paper that could be naturally combined with the optimistic

approaches discussed here [18, 20, 25, 45–47].

We also remark that whilst the focus of this paper is on decen-

tralised cooperative multi-agent learning, the key structure of the

environments that makes optimism an effective means of learn-

ing is also shared by two-player sequential-move zero-sum games,

such as Chess and Go. Since this new setting is adversarial, one

must replace optimism with pessimism, but the underlying situ-

ation is fundamentally the same; in deterministic environments

with this structure, maximal pessimism is an effective means of

learning (and in fact corresponds to minimax Q-learning [23]), but

when environments are stochastic, this pessimismmust be softened.

Empirical investigation of TD-pessimistic, return-pessimistic, and

interpolating approaches is, therefore, an additional interesting

future direction.

In summary, this work has explored the properties of TD-optimistic

and return-optimistic approaches to cooperative multiagent learn-

ing, and has introduced a unifying framework that encompasses

these families of algorithms. Our findings identify several key prop-

erties of environments that distinguish the behaviour of these algo-

rithms in environments with state, and the framework also naturally

suggests unexplored combinations of optimism targets and types

which could be explored in future work.
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